150 research outputs found

    Wave-induced loads on a lock gate provided with an opening through the ballast tank

    Get PDF
    AbstractThe wave loads on a navigation lock gate provided with an opening in the ballast tank are analyzed using a mathematical model based on the linear wave theory. The analysis focuses on the influence of the wave number and the geometrical characteristics of the structure on the applied load. It is shown that the maximum value of the vertical force mainly depends on the height of the ballast tank and on the width of the opening. The wave number for which the maximum load occurs significantly depends on the geometric characteristics of the structure except for the water depth above the ballast tank which has a negligible effect. An increase in the height of the ballast tank causes an increase in the wave load while an increase in the width of the opening causes a decrease in the wave load. Based on the results of the mathematical model an easy to use regression model has been developed which can be employed to evaluate the wave load

    Determination of band-offset enhanced in InGaAsP -InGaAsP strained multiquantum wells by photocurrent measurements

    Get PDF
    We experimentally determine the band offset of strain-compensated InGaAsP-InGaAsP multiquantum-well (MQW) heterostructures, emitting at 1.55 mum, that were grown by metal-organic chemical vapor deposition. A band offset value of about 56% is found for the conduction band, which is higher than the value reported for the unstrained structure. The temperature dependence of the photoluminescence intensity shows that the unipolar detrapping of carriers in such MQWs is more efficient than the thermal activation of excitons. (C) 2005 American Institute of Physic

    Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells

    Get PDF
    Chlorpromazine (CPZ) is a small permeable cationic amphiphilic molecule that inserts into membrane bilayers and binds to anionic lipids such as poly-phosphoinositides (PIs). Since PIs play important roles in many cellular processes, including signaling and membrane trafficking pathways, it has been proposed that CPZ affects cellular growth functions by preventing the recruitment of proteins with specific PI-binding domains. In this study, we have investigated the biological effects of CPZ in the yeast Saccharomyces cerevisiae. We screened a collection of approximately 4,800 gene knockout mutants, and found that mutants defective in membrane trafficking between the late-Golgi and endosomal compartments are highly sensitive to CPZ. Microscopy and transport analyses revealed that CPZ affects membrane structure of organelles, blocks membrane transport and activates the unfolded protein response (UPR). In addition, CPZ-treatment induces phosphorylation of the translation initiation factor (eIF2α), which reduces the general rate of protein synthesis and stimulates the production of Gcn4p, a major transcription factor that is activated in response to environmental stresses. Altogether, our results reveal that membrane stress within the cells rapidly activates an important gene expression program, which is followed by a general inhibition of protein synthesis. Remarkably, the increase of phosphorylated eIF2α and protein synthesis inhibition were also detected in CPZ-treated NIH-3T3 fibroblasts, suggesting the existence of a conserved mechanism of translational regulation that operates during a membrane stres

    CATANIA HARBOR BREAKWATER: PHYSICAL MODELLING OF THE UPGRADED STRUCTURE

    Get PDF
    Most of the worldwide historical coastal and harbor structures have been severely damaged by extreme sea storms during their lifetime and hence need to be upgraded, also considering the effects of climate change (Hughes, 2014). Physical modelling is identified as the only feasible approach for the optimization of the upgraded structures, because of the existence of few studies concerning such an issue and the lack of specific design formulae (Burcharth et al. 2014; Croeneveld et al. 1984; Lara et al. 2019; Foti et al. 2020). Therefore, a novel general methodology for the design of upgrading solutions for existing breakwaters based on physical modelling is presented, considering the case study of the Catania Harbor breakwater. The results of the systematic extensive experimental campaign on possible solutions for upgrading the Catania harbor breakwater led to some general practical findings, which can be useful for the design of restoration options for existing breakwater at end of their lifetime

    I.S.Mu.L.T - Rotator cuff tears guidelines

    Get PDF
    Despite the high level achieved in the field of shoulder surgery, a global consensus on rotator cuff tears management is lacking. This work is divided into two main sessions: in the first, we set questions about hot topics involved in the rotator cuff tears, from the etiopathogenesis to the surgical treatment. In the second, we answered these questions by mentioning Evidence Based Medicine. The aim of the present work is to provide easily accessible guidelines: they could be considered as recommendations for a good clinical practice developed through a process of systematic review of the literature and expert opinion, in order to improve the quality of care and rationalize the use of resources

    Implementing fencing as adapted physical activity in non-metastatic breast cancer patients: design and early rehabilitation strategy of the FENICE study protocol

    Get PDF
    background Improving prognosis of BC patients has drawn the attention of health care professionals on disease related long-term side effects and on the multiple treatments BC patients must undergo. despite advances in procedures, surgery still has multiple detrimental effects, including pain, edema, and limited mobility. For this reason, fostering adapted physical activity (APA) and healthy lifestyle (including a balanced diet and weight management) should become an everyday purpose of healthcare professionals. Fencing may be a well-suited activity to counteract fatigue, pain, and limited arm mobility. method and analysis The FENICE study is a mono-center, randomized clinical trial targeting women with BC stages I-III within four weeks from BC surgery. participants in the control arm will receive the usual recommendations based on the good clinical practice guidelines. In the study arm, participants will be treated with the usual clinical and therapeutic recommendations together with APA and correct lifestyle suggestions. objective the primary objective of the study is to compare whether implementation of APA and healthy lifestyle in BC patient after surgery will result in an overall improvement of physical and mental status. conclusion fencing and its early application in postoperative period may represent a feasible strategy to be implemented in the rehabilitation journey of BC patients. ethics and dissemination the study protocol FENICE has been approved by an italian ethics committee on May 2023 (R.S 100.23 5th May 2023)

    Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with {MeCP}2 non-sense mutations

    Get PDF
    Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis

    SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells

    Get PDF
    Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs) and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson's disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1), is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD) while the embedded inverted SINEB2 element is the Effector Domain (ED). By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed toward N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson's disease-associated DJ-1 and proved to be active in different neuronal cell lines. In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies
    • …
    corecore