333 research outputs found
A Distributed Electrical Model for Interdigitated back Contact Silicon Solar Cells
AbstractIn this paper we introduce a quasi 3-D electrical model for a high efficiency interdigitated back contact (IBC) solar cell. This distributed electrical network is based on two-diodes circuit elementary units. It allows accounting for the resistive losses due to the transport through the emitter, the back surface field (BSF) and the fingers and busbars metallization. Moreover, it can model the electrical shading losses attributed to the BSF busbar. We calibrated the electrical components of the model according to experimental measurements on real devices. The validity of the model is demonstrated by the good agreement between simulation and experimental results for dark and illuminated IV measurements with and without masked busbars. The model can now easily be applied to simulate and optimize different metal grid layouts
Simulation Study of Light-induced, Current-induced Degradation and Recovery on PERC Solar Cells
Abstract The way to permanently recover the well-known Light-Induced Degradation (LID) which affects the p-type Cz-Si PERC solar cells represents one of the main challenges of photovoltaic research. In this work we have set up a numerical simulations flow which allows us to reproduce the experimental measured values of figures of merit (FOMs) of four different Cz-PERC solar cells lots subjected to a degradation and two regeneration processes. The recombination centres in bulk and the Boron-Oxygen complexes (B-O) are modeled by means of two trap levels tuned on the basis of experimental data. From simulations we confirm that the FOM degradation levels off after 16hours and the regeneration process characterized by relatively long time process is preferred in terms of performance recovery. In addition, further cells with different passivation films are analyzed by adopting the same methodology
Numerical Simulation of Vertical Silicon Nanowires based Heterojunction Solar Cells
Abstract Nanowires (NWs) solar cells are expected to outperform the thin-film counterparts in terms of optical absorptance. In this theoretical study we optimize the geometry of vertical crystalline-amorphous silicon core-shell NW arrays on doped ZnO:Al (AZO)-Glass substrate by means of 3-D optical simulations in order to maximize the photon absorption. The optimized geometry is investigated by means of 3-D TCAD numerical simulation in order to calculate the ultimate efficiency and the main figures of merit by taking into account recombination losses. We show that optimized 10 μm-long crystalline – amorphous silicon core-shell (c-Si/a-Si/AZO/Glass) NWs can reach photo-generated current up to 22.94 mA/cm 2 (above 45% larger than that of the planar counterpart with the same amount of absorbing material) and conversion efficiency of 13.95%
Analysis of the impact of doping levels on performance of back contact - back junction solar cells
AbstractIn this work, by exploiting two-dimensional (2-D) TCAD numerical simulations, we performed a study of the impact of the doping levels on the main figures of merit in the different regions of a crystalline silicon Back-Contact Back-Junction (BC-BJ) solar cell: the emitter, the Back Surface Field (BSF) and the Front Surface Field (FSF). The study is supported by a dark loss analysis which can highlight the contribution of several recombination mechanisms to the total diode saturation current. The efficiency curve as a function of doping level exhibits a bell-shape with a clearly identifiable optimum value for the three regions. The decrease in efficiency observed at lower doping values is explained in terms of higher contact recombination for BSF and emitter, and in terms of higher surface recombination for FSF. The efficiency decrease observed at higher doping values is ascribed to the higher surface recombination for FSF and Auger recombination for all cases
Simulation Study of Multi-wire front Contact Grids for Silicon Solar Cells
Abstract Multi-wire (MW) front-contact schemes represent a promising alternative to standard H-pattern structure with ribbon busbar (BB) in silicon solar cells. In the case of MW schemes, busbar are replaced by copper wires. MW have been demonstrated to enhance the photo-generation with respect to a standard H-pattern structure with ribbon busbar when solar cells are encapsulated and assembled in modules. However, the influence of the geometrical and optical properties of the encapsulation layers as well as of wires on the optical effective shading is not exhaustively treated by the literature. In this work, we have performed electro-optical simulations of MW and BB based solar cells in order to calculate the effective optical shading factor, the enhancement of conversion efficiency and the saving of contact-paste, with respect to the BB design. Specifically, we have studied by means of a ray-tracing simulation tool the significant impact of the front contact grid geometry, of the encapsulation layer thickness and of the optical properties of the cell front interface on the effective optical shading. The calculated values of effective optical shading are used to determine the enhancement of the figures of merit and the paste saving with respect to the reference silver BB scheme. On the basis of our calculations the adoption of optimized MW designs may enhance the conversion efficiency up to 0.5% abs , allowing paste saving up to 50 mg per cell
Hot-Carrier Degradation in Power LDMOS: Selective LOCOS-Versus STI-Based Architecture
In this paper, we present an analysis of the degradation induced by hot-carrier stress in new generation power lateral double-diffused MOS (LDMOS) transistors. Two architectures with the same nominal voltage and comparable performance featuring a selective LOCOS and a shallow-trench isolation are investigated by means of constant voltage stress measurements and TCAD simulations. In particular, the on-resistance degradation in linear regime is experimentally extracted and numerically reproduced under different stress conditions. A similar amount of degradation has been reached by the two architectures, although different physical mechanisms contribute to the creation of the interface states. By using a recently developed physics-based degradation model, it has been possible to distinguish the damage due to collisions of single high-energetic electrons (single-particle events) and the contribution of colder electrons impinging on the silicon/oxide interface (multiple-particle events). A clear dominance of the single-electron collisions has been found in the case of LOCOS structure, whereas the multiple-particle effect plays a clear role in STI-based device at larger gate-voltage stress
Numerical Simulation and Experimental Characterization of Emitter Wrap through Solar Cells with Deep Grooved Base Contact (EWT-DGB)
Abstract In this work we present an Emitter Wrap Through cell with Deep Grooved Base contact (EWT-DGB), designed for both 1-sun and concentrating applications. The proposed approach, which consists in a deep grooved hole array composed by holes of two alternating doping type, allows both a reduction of the cell series resistance and an increase in collection efficiency also by using relatively thick substrates with low lifetime. The measured experimental data including dark J-V characteristics, figures of merit (FOMs) under illumination and external quantum efficiency (EQE) are compared to the results of 3-D drift-diffusion TCAD numerical simulations. Moreover, the impact of the hole spacing and of process-dependent physical parameters (interface defects) on FOMs is investigated by means of simulations
A Comparative Study of MWT Architectures by Means of Numerical Simulations
AbstractIn order to improve the efficiency of c-Si and mc-Si solar cells, Metal Wrap Though (MWT) architecture is investigated. In this paper we implement TCAD numerical simulations to analyze the performance of MWT cells with a point busbar or a continuous busbar at the back side. The two topologies of MWT cells are compared in both illuminated and dark conditions, aiming at understanding and comparing the resistive and recombination losses. The impact of the separation region is also studied, highlighting the degradation effect on the Fill Factor (FF) and on the efficiency in the two structures. We observe that the separation region dimension leads to a higher degradation of efficiency in case of continuous busbar
- …