17 research outputs found

    Polymer electrolyte membranes and process for the production thereof

    Get PDF
    The process for the production of a polymer electrolyte membrane, comprises the successive steps of: preparing a mixed solution of a Room Temperature Ionic Liquid (RTIL), at least one alkaline metal salt and a photosensitive hydrogen abstracting component at a temperature in the range 20 to 70 °C, wherein the RTIL is a compound consisting of at least one organic cation and at least one organic or inorganic anion; adding to the solution a polymeric material at a temperature in the range of 20-70 °C; blending the solution added with the polymeric material at a temperature in the range of 70-140 °C to get a uniform mixture; pressing the mixture between two sheets at a temperature in the range of 60 - 150 °C and a pressure in the range of 20 - 80 bar, so that a film is formed; and exposing the film to UV light, so that the polymeric material of the film is cross-linked and the polymer electrolyte membrane is obtained

    Facile Synthesis of Highly Graphitized Carbon via Reaction of CaC2 with Sulfur and Its Application for Lithium/Sodium-Ion Batteries

    No full text
    Facile Synthesis of Highly Graphitized Carbon via Reaction of CaC2 with Sulfur and Its Application for Lithium/Sodium-Ion Batterie

    Damage formation in Sn film anodes of Na-ion batteries

    No full text
    Sn anodes for Na-ion batteries exhibit a promising initial capacity of 847 mAh g–1, which however, cannot be retained throughout continuous cycling due to the 420% volume changes that Sn experiences during sodiation. Previous experimental studies suggest that fracture does not occur in the submicron Sn particles during the formation of Na-Sn alloys; however, such colossal volume changes must result in microstructural damage. In the present work, the damage mechanisms during sodiation are isolated and accentuated by employing a Sn thick film of 0.5 mm as the anode. This simplified planar geometry allows to dispense with the influence of the binder and carbon additives that are required in porous electrodes. Post-mortem electron microscopy revealed new deformation mechanisms for anode materials, as multiple whiskers nucleated on the surface of the Sn, whereas pores formed within the Sn (over the Na-ion penetration distance) after electrochemical cycling. These mechanisms were in addition to the dry lake-bed fracture that was also observed. A comparative study on a Sn thin-film anode of 0.06 mm revealed the formation of fracture and pores after cycling, but no whiskers. The whiskers and pores observed in the thick Sn film anode may be more subtle at the nanoscale, and therefore have not been reported for submicron Sn particles in porous electrodes during sodiation
    corecore