50 research outputs found

    Use of cadmium isotopes to distinguish sources of cadmium in New Zealand agricultural soil: Preliminary results

    Get PDF
    In New Zealand’s agricultural soils, phosphate fertiliser applications are the main source of cadmium (Cd). In 1997, the NZ fertiliser industry discontinued sourcing rock phosphate from Nauru (about 450 mg Cd/ Kg P) and began producing superphosphate from other rock phosphate sources (such as Morocco), which have generally lower concentrations of Cd. Research on the concentration of Cd in soils from the long-term irrigation trials at the Winchmore research farm (Canterbury) indicates that Cd accumulation rates have started to slow in the period since 1997 (Fig. 1) (McDowell 2012)

    U-Pb chronology of the Solar System's oldest solids with variable 238 U/ 235 U

    No full text
    Accurate determination of the absolute ages of the oldest Solar System objects - chondrules and Ca-Al-rich inclusions (CAIs), requires knowledge of their 238U/235U ratios. This ratio was assumed to be invariant in all U-Pb dating of meteorites so far, but the recent discovery of U isotope variations in CAIs (Brennecka et al., 2010a) shows that this assumption is invalid. We present the first combined high-precision U and Pb isotopic data for a CAI, and U isotopic data for chondrules and whole rock fractions of the Allende meteorite. The Pb-Pb isochron age of the CAI SJ101 is 4567.18±0.50Ma, calculated using the measured 238U/235U=137.876±0.043 (2σ), reported relative to 238U/235U=137.837 of the CRM 145 standard. Our best current estimate of the average terrestrial value is: 238U/235U=137.821±0.014.The error in the age includes uncertainties in the Pb-Pb isochron intercept and in the 238U/235U ratio. Allende bulk rock and chondrules have 238U/235U=137.747±0.017 (2σ), distinctly lower than the CAI. The difference in the 238U/235U ratio of 0.129±0.046 (2σ) between the CAI and chondrules and bulk meteorite increases the 207Pb-206Pb age difference by ~1.4Ma, and eliminates apparent disagreement between the CAI-chondrule formation time interval determinations with the U-Pb and extinct nuclide (26Al-26Mg and 182Hf-182W) data. We discuss standardisation of 238U/235U measurements for U-Pb geochronology and cosmochronology, elemental and isotopic fractionation induced by intensive acid leaching, ages of CAIs in the context of 238U/235U variability, and possible causes of U isotopic variations in CAIs and meteorites

    Structural Controls on Shallow Cenozoic Fluid Flow in the Otago Schist, New Zealand

    Get PDF
    The Otago Schist in the South Island of New Zealand represents an exhumed Mesozoic accretionary prism. Two coastal areas (Akatore Creek and Bruce Rocks) south of Dunedin preserve structural and geochemical evidence for the development of postmetamorphic hydrothermal systems that involved widespread fluid-rock reaction at shallow crustal depths. The Jurassic to Triassic pumpellyite-actinolite (Akatore Creek) to upper greenschist facies (Bruce Rocks) metamorphic fabrics were crosscut by sets of regionally extensive Cretaceous exhumation joints. Many of the joints were subsequently reactivated to form networks of small-displacement (<metres) strike-slip faults containing cemented fault breccias and veins composed of hydrothermal calcite, siderite, and ankerite. Paleostress analysis performed on infrequent fault slickenlines indicates an overall strike-slip paleostress regime and a paleo-σ1 orientation (azimuth 094°) similar to the contemporary σ1 orientation in Otago and Canterbury (azimuth c. 110°-120°). High δ18O values in vein calcite (δ18OVPDB=21 to 28‰), together with the predominance of Type I calcite twins, suggest that vein formation occurred at low temperatures (<200°C) in the shallow crust and was associated with strongly channelized fluid flow along the joint and fault networks. Mass-balance calculations performed on samples from carbonate alteration zones show that significant mobilisation of elements occurred during fluid flow and fluid-rock reaction. Whole-rock and in situ carbonate 87Sr/86Sr data indicate varying degrees of interaction between the hydrothermal fluids and the host rock schists. Fluids were likely derived from the breakdown of metamorphic Ca-rich mineral phases with low 87Rb in the host schists (e.g., epidote or calcite), as well as more radiogenic components such as mica. Overall, the field and geochemical data suggest that shallow fluid flow in the field areas was channelized along foliation surfaces, exhumation joints, and networks of brittle faults, and that these structures controlled the distribution of fluid-rock reactions and hydrothermal veins. The brittle fault networks and associated hydrothermal systems are interpreted to have formed after the onset of Early Miocene compression in the South Island and may represent the manifestation of fracturing and fluid flow associated with reverse reactivation of regional-scale faults such as the nearby Akatore Fault

    Uranium isotope fractionation

    No full text
    This review focuses on the rapidly growing field of natural 238U/235U variability, largely driven by the technical advances in the measurement of U isotope ratios by mass spectrometry with increasing precision over the last decade. A thorough review on the application of the U-decay series systems within Earth sciences was published in Reviews in Mineralogy and Geochemistry (RiMG) volume 52 in 2003, and will not be discussed further within this review. Instead, this article will first focus on the basic chemical properties of U and the evolution of 238U/235U measurement techniques, before discussing the latest findings and use of this isotopic system to address questions within geochronology, cosmochemistry and Earth sciences

    Uranium isotope fractionation

    No full text
    This review focuses on the rapidly growing field of natural 238U/235U variability, largely driven by the technical advances in the measurement of U isotope ratios by mass spectrometry with increasing precision over the last decade. A thorough review on the application of the U-decay series systems within Earth sciences was published in Reviews in Mineralogy and Geochemistry (RiMG) volume 52 in 2003, and will not be discussed further within this review. Instead, this article will first focus on the basic chemical properties of U and the evolution of 238U/235U measurement techniques, before discussing the latest findings and use of this isotopic system to address questions within geochronology, cosmochemistry and Earth sciences
    corecore