16 research outputs found
Feeding Our Immune System: Impact on Metabolism
Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose) impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs) of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy
Interleukin-7 Regulates Adipose Tissue Mass and Insulin Sensitivity in High-Fat Diet-Fed Mice through Lymphocyte-Dependent and Independent Mechanisms
Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions
Induction of Therapeutic Antibodies by Vaccination against External Loops of Tumor-Associated Viral Latent Membrane Protein▿
Some human herpesviruses (HHV) are etiological contributors to a wide range of malignant diseases. These HHV express latent membrane proteins (LMPs), which are type III membrane proteins consistently exposed at the cell surface in these malignancies. These LMPs have relatively large cytoplasmic domains but only short extracellular loops connecting transmembrane segments that are accessible at the surface of infected cells, but they do not elicit antibodies in the course of natural infection and tumorigenesis. We report here that conformational peptides mimicking two adjacent loops of the Epstein-Barr virus (EBV) LMP1 (2LS peptides) induce high-affinity antibodies with remarkable antitumor activities in mice. In active immunization experiments, LMP1-targeting 2LS vaccine conferred tumor protection in BALB/c mice. Moreover, this tumor protection is dependent upon a humoral anti-2LS immune response as demonstrated in DO11.10 (TCR-OVA) mice challenged with LMP1-expressing tumor and in SCID mice xenografted with human EBV-positive lymphoma cells. These data provide a proof of concept for 2LS immunization against short external loops of viral LMPs. This approach might possibly be extended to other infectious agents expressing type III membrane proteins
Regulatory Role of Interleukin-10 in Experimental Group B Streptococcal Arthritis
Intravenous inoculation of CD-1 mice with 10(7) CFU of type IV group B Streptococcus (GBS) results in a high incidence of diffuse septic arthritis , associated with high levels of systemic and local production of interleukin-1β (IL-1β) and IL-6. In this study, the role of the anti-inflammatory cytokine IL-10 in the evolution of GBS systemic infection and arthritis was evaluated. IL-10 production was evident in sera and joints of GBS-infected mice. Neutralization of endogenous IL-10 by administration of anti-IL-10 antibodies (1 mg/mouse) at the time of infection resulted in worsening of articular lesions and 60% mortality associated with early sustained production of IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α). The effect of IL-10 supplementation was assessed by administering IL-10 (100, 200, or 400 ng/mouse) once a day for 5 days, starting 1 h after infection. Treatment with IL-10 had a beneficial effect on GBS arthritis, and there was a clear-cut dose dependence. The decrease in pathology was associated with a significant reduction in IL-6, IL-1β, and TNF-α production. Histological findings showed limited periarticular inflammation and a few-cell influx in the articular cavity of IL-10-treated mice, confirming clinical observations. In conclusion, this study provides further information concerning the role of IL-10 in regulating the immune response and inflammation and calls attention to the potential therapeutic use of IL-10 in GBS arthritis
Heparin-Binding Hemagglutinin Adhesin (HBHA) Is Involved in Intracytosolic Lipid Inclusions Formation in Mycobacteria
The heparin-binding hemagglutinin adhesin (HBHA) is an important virulence factor of Mycobacterium tuberculosis. It is a surface-displayed protein that serves as an adhesin for non-phagocytic cells and is involved in extra-pulmonary dissemination of the tubercle bacillus. It is also an important latency antigen useful for the diagnosis of latently M. tuberculosis-infected individuals. Using fluorescence time-lapse microscopy on mycobacteria that produce HBHA-green fluorescent protein chimera, we show here that HBHA can be found at two different locations and dynamically alternates between the mycobacterial surface and the interior of the cell, where it participates in the formation of intracytosolic lipid inclusions (ILI). Compared to HBHA-producing mycobacteria, HBHA-deficient mutants contain significantly lower amounts of ILI when grown in vitro or within macrophages, and the sizes of their ILI are significantly smaller. Lipid-binding assays indicate that HBHA is able to specifically bind to phosphatidylinositol and in particular to 4,5 di-phosphorylated phosphatidylinositol, but not to neutral lipids, the main constituents of ILI. HBHA derivatives lacking the C-terminal methylated, lysine-rich repeat region fail to bind to these lipids and these derivatives also fail to complement the phenotype of HBHA-deficient mutants. These studies indicate that HBHA is a moonlighting protein that serves several functions depending on its location. When surface exposed, HBHA serves as an adhesin, and when intracellularly localized, it participates in the generation of ILI, possibly as a cargo to transport phospholipids from the plasma membrane to the ILI in the process of being formed