154 research outputs found

    Data-Driven Model-Free Sliding Mode and Fuzzy Control with Experimental Validation

    Get PDF
    The paper presents the combination of the model-free control technique with two popular nonlinear control techniques, sliding mode control and fuzzy control. Two data-driven model-free sliding mode control structures and one data-driven model-free fuzzy control structure are given. The data-driven model-free sliding mode control structures are built upon a model-free intelligent Proportional-Integral (iPI) control system structure, where an augmented control signal is inserted in the iPI control law to deal with the error dynamics in terms of sliding mode control. The data-driven model-free fuzzy control structure is developed by fuzzifying the PI component of the continuous-time iPI control law. The design approaches of the data-driven model-free control algorithms are offered. The data-driven model-free control algorithms are validated as controllers by real-time experiments conducted on 3D crane system laboratory equipment

    A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS

    Get PDF
    Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    An Approach to Fuzzy Modeling of Electromagnetic Actuated Clutch Systems

    Get PDF
    This paper proposes an approach to fuzzy modeling of a nonlinear servo system application represented by an electromagnetic actuated clutch system. The nonlinear model of the process is simplified and linearized around several operating points of the input-output static map of the process. Discrete-time Takagi-Sugeno (T-S) fuzzy models of the processes are derived on the basis of the modal equivalence principle; the rule consequents of these T-S fuzzy models contain the state-space models of the process. Three discrete-time T-S fuzzy models are suggested and compared. The simulation results validate the new fuzzy models of the electromagnetic actuated clutch system

    Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity

    Get PDF
    BACKGROUND: It is known that tissue macrophages derive not only from blood monocytes but also from yolk sac or fetal liver, and the tissue of residence guides their function. When isolated, they lose tissue specific signatures, hence studies of human macrophages should be ideally done directly in the tissue. The aim of this study was to investigate directly in human lung tissue the polarization of alveolar macrophage (AM), classic (M1) or alternative (M2), in health and disease, using COPD as a model. METHODS: Surgical lungs from 53 subjects were studied: 36 smokers whose FEV(1) varied from normal to severe COPD, 11 non-smokers and 6 normal donors. iNOS and CD206 immunohistochemistry was used to quantify the percentage of AM polarized as M1 or M2 in lung sections. RESULTS AND DISCUSSION: The percentage of M1 and M2 increased progressively with smoking and COPD severity, from 26% to 84% for M1 and from 7% to 78% for M2. In donors 74% of AM were negative for M1 and 93% for M2. Confocal microscopy showed co-localization of M1 and M2 in the same AM in severe COPD. CONCLUSION: In normal lungs alveolar macrophages were mostly non-polarized. With smoking and COPD severity, M1 and M2 polarization increased significantly and so did the co-expression of M1 and M2 in the same alveolar macrophage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12931-017-0522-0) contains supplementary material, which is available to authorized users

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Efficacy and safety of immune checkpoint inhibitor rechallenge in individuals with hepatocellular carcinoma

    Full text link
    BACKGROUND & AIMS: We investigated the efficacy and safety of immune checkpoint inhibitor (ICI) rechallenge in patients with hepatocellular carcinoma (HCC) who received ICI-based therapies in a previous systemic line. METHODS: In this international, retrospective multicenter study, patients with HCC who received at least two lines of ICI-based therapies (ICI-1, ICI-2) at 14 institutions were eligible. The main outcomes included best overall response and treatment-related adverse events. RESULTS: Of 994 ICI-treated patients screened, a total of 58 patients (male, n = 41; 71%) with a mean age of 65.0±9.0 years were included. Median systemic treatment lines of ICI-1 and ICI-2 were 1 (range, 1-4) and 3 (range, 2-9), respectively. ICI-based therapies used at ICI-1 and ICI-2 included ICI alone (ICI-1, n = 26, 45%; ICI-2, n = 4, 7%), dual ICI regimens (n = 1, 2%; n = 12, 21%), or ICI combined with targeted therapies/anti-VEGF (n = 31, 53%; n = 42, 72%). Most patients discontinued ICI-1 due to progression (n = 52, 90%). Objective response rate was 22% at ICI-1 and 26% at ICI-2. Responses at ICI-2 were also seen in patients who had progressive disease as best overall response at ICI-1 (n = 11/21; 52%). Median time-to-progression at ICI-1 and ICI-2 was 5.4 (95% CI 3.0-7.7) months and 5.2 (95% CI 3.3-7.0) months, respectively. Treatment-related adverse events of grade 3-4 at ICI-1 and ICI-2 were observed in 9 (16%) and 10 (17%) patients, respectively. CONCLUSIONS: ICI rechallenge was safe and resulted in a treatment benefit in a meaningful proportion of patients with HCC. These data provide a rationale for investigating ICI-based regimens in patients who progressed on first-line immunotherapy in prospective trials. IMPACT AND IMPLICATIONS: Therapeutic sequencing after first-line immune checkpoint inhibitor (ICI)-based therapy for advanced hepatocellular carcinoma (HCC) remains a challenge as no available second-line treatment options have been studied in immunotherapy-pretreated patients. Particularly, the role of ICI rechallenge in patients with HCC is unclear, as data from prospective trials are lacking. We investigated the efficacy and safety of ICI-based regimens in patients with HCC pretreated with immunotherapy in a retrospective, international, multicenter study. Our data provide the rationale for prospective trials investigating the role of ICI-based regimens in patients who have progressed on first-line immunotherapy
    corecore