2 research outputs found

    What Can 5G Do for Public Safety? Structural Health Monitoring and Earthquake Early Warning Scenarios

    No full text
    The 5th generation of mobile networks has come to the market bringing the promise of disruptive performances as low latency, availability and reliability, imposing the development of the so-called “killer applications”. This contribution presents a 5G use case in the context of Structural Health Monitoring which guarantees an unprecedented level of reliability when exploited for public safety purposes as Earthquake Early Warning. The interest on this topic is at first justified through a deep market analysis, and subsequently declined in terms of public safety benefits. A specific sensor board, guaranteeing real-time processing and 5G connectivity, is presented as the foundation on which the architecture of the network is designed and developed. Advantages of 5G-enabled urban safety are then discussed and proven in the experimentation results, showing that the proposed architecture guarantees lower latency delays and overcome the impairments of cloud solutions especially in terms of delays variability

    Microgravity and the intervertebral disc: The impact of space conditions on the biomechanics of the spine

    Get PDF
    The environmental conditions to which astronauts and other military pilots are subjected represent a unique example for understanding and studying the biomechanical events that regulate the functioning of the human body. In particular, microgravity has shown a significant impact on various biological systems, such as the cardiovascular system, immune system, endocrine system, and, last but not least, musculoskeletal system. Among the potential risks of flying, low back pain (LBP) has a high incidence among astronauts and military pilots, and it is often associated with intervertebral disc degeneration events. The mechanisms of degeneration determine the loss of structural and functional integrity and are accompanied by the aberrant production of pro-inflammatory mediators that exacerbate the degenerative environment, contributing to the onset of pain. In the present work, the mechanisms of disc degeneration, the conditions of microgravity, and their association have been discussed in order to identify possible molecular mechanisms underlying disc degeneration and the related clinical manifestations in order to develop a model of prevention to maintain health and performance of air- and space-travelers. The focus on microgravity also allows the development of new proofs of concept with potential therapeutic implications
    corecore