58 research outputs found
A generalized deep learning network for fractional anisotropy reconstruction: Application to epilepsy and multiple sclerosis
Fractional anisotropy (FA) is a quantitative map sensitive to microstructural properties of tissues in vivo and it is extensively used to study the healthy and pathological brain. This map is classically calculated by model fitting (standard method) and requires many diffusion weighted (DW) images for data quality and unbiased readings, hence needing the acquisition time of several minutes. Here, we adapted the U-net architecture to be generalized and to obtain good quality FA from DW volumes acquired in 1 minute. Our network requires 10 input DW volumes (hence fast acquisition), is robust to the direction of application of the diffusion gradients (hence generalized), and preserves/improves map quality (hence good quality maps). We trained the network on the human connectome project (HCP) data using the standard model-fitting method on the entire set of DW directions to extract FA (ground truth). We addressed the generalization problem, i.e., we trained the network to be applicable, without retraining, to clinical datasets acquired on different scanners with different DW imaging protocols. The network was applied to two different clinical datasets to assess FA quality and sensitivity to pathology in temporal lobe epilepsy and multiple sclerosis, respectively. For HCP data, when compared to the ground truth FA, the FA obtained from 10 DW volumes using the network was significantly better (p <10-4) than the FA obtained using the standard pipeline. For the clinical datasets, the network FA retained the same microstructural characteristics as the FA calculated with all DW volumes using the standard method. At the subject level, the comparison between white matter (WM) ground truth FA values and network FA showed the same distribution; at the group level, statistical differences of WM values detected in the clinical datasets with the ground truth FA were reproduced when using values from the network FA, i.e., the network retained sensitivity to pathology. In conclusion, the proposed network provides a clinically available method to obtain FA from a generic set of 10 DW volumes acquirable in 1 minute, augmenting data quality compared to direct model fitting, reducing the possibility of bias from sub-sampled data, and retaining FA pathological sensitivity, which is very attractive for clinical applications
A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics
Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions
Systemic inflammation associates with and precedes cord atrophy in progressive multiple sclerosis
In preclinical models of multiple sclerosis, systemic inflammation has an impact on the compartmentalised inflammatory process within the central nervous system and results in axonal loss. It remains to be shown whether this is the case in humans, specifically whether systemic inflammation contributes to spinal cord or brain atrophy in multiple sclerosis. Hence, an observational longitudinal study was conducted to delineate the relationship between systemic inflammation and atrophy using magnetic resonance imaging: the SIMS (Systemic Inflammation in Multiple Sclerosis) study. Systemic inflammation and progression were assessed in people with progressive multiple sclerosis (n = 50) over two and a half years. Eligibility criteria included: (1) primary or secondary progressive multiple sclerosis, (2) age ≤70, and (3) Expanded Disability Status Scale ≤6.5. First morning urine was collected weekly to quantify systemic inflammation by measuring the urinary neopterin-to-creatinine ratio using a validated ultra-performance liquid chromatography mass spectrometry technique. The urinary neopterin-to-creatinine ratio temporal profile was characterised by short-term responses overlaid on a background level of inflammation, so these two distinct processes were considered as separate variables: background inflammation and inflammatory response. In preclinical models, the effects of a systemic inflammatory challenge on tissue injury depended on prior exposure to inflammation. Participants underwent MRI at the start and end of the study, to measure cervical spinal cord and brain atrophy. Brain and cervical cord atrophy occurred on the study, but the most striking change was seen in the cervical spinal cord, in keeping with the corticospinal tract involvement that is typical of progressive disease. Systemic inflammation predicted cervical cord atrophy. An association with brain atrophy was not observed in this cohort. A time lag between systemic inflammation and cord atrophy was evident, suggesting but not proving causation. The association of the inflammatory response with cord atrophy depended on the level of background inflammation, in keeping with experimental data in preclinical models. A higher inflammatory response was associated with accelerated cord atrophy in the presence of background systemic inflammation below the median for the study population. Higher background inflammation, while associated with cervical cord atrophy itself, subdued the association of the inflammatory response with cord atrophy. Findings were robust to sensitivity analyses adjusting for potential confounders and excluding cases with new lesion formation. In conclusion, systemic inflammation associates with, and precedes, multiple sclerosis progression. Further work is needed to prove causation since targeting systemic inflammation may offer novel treatment strategies for slowing neurodegeneration in multiple sclerosis
Challenges and Perspectives of Quantitative Functional Sodium Imaging (fNaI).
Brain function has been investigated via the blood oxygenation level dependent (BOLD) effect using magnetic resonance imaging (MRI) for the past decades. Advances in sodium imaging offer the unique chance to access signal changes directly linked to sodium ions (23Na) flux across the cell membrane, which generates action potentials, hence signal transmission in the brain. During this process 23Na transiently accumulates in the intracellular space. Here we show that quantitative functional sodium imaging (fNaI) at 3T is potentially sensitive to 23Na concentration changes during finger tapping, which can be quantified in gray and white matter regions key to motor function. For the first time, we measured a 23Na concentration change of 0.54 mmol/l in the ipsilateral cerebellum, 0.46 mmol/l in the contralateral primary motor cortex (M1), 0.27 mmol/l in the corpus callosum and -11 mmol/l in the ipsilateral M1, suggesting that fNaI is sensitive to distributed functional alterations. Open issues persist on the role of the glymphatic system in maintaining 23Na homeostasis, the role of excitation and inhibition as well as volume distributions during neuronal activity. Haemodynamic and physiological signal recordings coupled to realistic models of tissue function will be critical to understand the mechanisms of such changes and contribute to meeting the overarching challenge of measuring neuronal activity in vivo
Rapid Lung Ultrasound COVID-19 Severity Scoring with Resource-Efficient Deep Feature Extraction
Artificial intelligence-based analysis of lung ultrasound imaging has been
demonstrated as an effective technique for rapid diagnostic decision support
throughout the COVID-19 pandemic. However, such techniques can require days- or
weeks-long training processes and hyper-parameter tuning to develop intelligent
deep learning image analysis models. This work focuses on leveraging
'off-the-shelf' pre-trained models as deep feature extractors for scoring
disease severity with minimal training time. We propose using pre-trained
initializations of existing methods ahead of simple and compact neural networks
to reduce reliance on computational capacity. This reduction of computational
capacity is of critical importance in time-limited or resource-constrained
circumstances, such as the early stages of a pandemic. On a dataset of 49
patients, comprising over 20,000 images, we demonstrate that the use of
existing methods as feature extractors results in the effective classification
of COVID-19-related pneumonia severity while requiring only minutes of training
time. Our methods can achieve an accuracy of over 0.93 on a 4-level severity
score scale and provides comparable per-patient region and global scores
compared to expert annotated ground truths. These results demonstrate the
capability for rapid deployment and use of such minimally-adapted methods for
progress monitoring, patient stratification and management in clinical practice
for COVID-19 patients, and potentially in other respiratory diseases.Comment: Accepted to ASMUS 2022 Workshop at MICCA
Diffusion tensor imaging of post mortem multiple sclerosis brain.
Magnetic resonance imaging (MRI) is being used to probe the central nervous system (CNS) of patients with multiple sclerosis (MS), a chronic demyelinating disease. Conventional T(2)-weighted MRI (cMRI) largely fails to predict the degree of patients' disability. This shortcoming may be due to poor specificity of cMRI for clinically relevant pathology. Diffusion tensor imaging (DTI) has shown promise to be more specific for MS pathology. In this study we investigated the association between histological indices of myelin content, axonal count and gliosis, and two measures of DTI (mean diffusivity [MD] and fractional anisotropy [FA]), in unfixed post mortem MS brain using a 1.5-T MR system. Both MD and FA were significantly lower in post mortem MS brain compared to published data acquired in vivo. However, the differences of MD and FA described in vivo between white matter lesions (WMLs) and normal-appearing white matter (NAWM) were retained in this study of post mortem brain: average MD in WMLs was 0.35x10(-3) mm(2)/s (SD, 0.09) versus 0.22 (0.04) in NAWM; FA was 0.22 (0.06) in WMLs versus 0.38 (0.13) in NAWM. Correlations were detected between myelin content (Tr(myelin)) and (i) FA (r=-0.79, p<0.001), (ii) MD (r=0.68, p<0.001), and (iii) axonal count (r=-0.81, p<0.001). Multiple regression suggested that these correlations largely explain the apparent association of axonal count with (i) FA (r=0.70, p<0.001) and (ii) MD (r=-0.66, p<0.001). In conclusion, this study suggests that FA and MD are affected by myelin content and - to a lesser degree - axonal count in post mortem MS brain
HLA-DRB1*1501 influences long-term disability progression and tissue damage on MRI in relapse-onset multiple sclerosis
BACKGROUND: Whether genetic factors influence the long-term course of multiple sclerosis (MS) is unresolved. OBJECTIVE: To determine the influence of HLA-DRB1*1501 on long-term disease course in a homogeneous cohort of clinically isolated syndrome (CIS) patients. METHODS: One hundred seven patients underwent clinical and MRI assessment at the time of CIS and after 1, 3, 5 and 15 years. HLA-DRB1*1501 status was determined using Sanger sequencing and tagging of the rs3135388 polymorphism. Linear/Poisson mixed-effects models were used to investigate rates of change in EDSS and MRI measures based on HLA-DRB1*1501 status. RESULTS: HLA-DRB1*1501 -positive (n = 52) patients showed a faster rate of disability worsening compared with the HLA-DRB1*1501 -negative (n = 55) patients (annualised change in EDSS 0.14/year vs. 0.08/year, p < 0.025), and a greater annualised change in T2 lesion volume (adjusted difference 0.45 mL/year, p < 0.025), a higher number of gadolinium-enhancing lesions, and a faster rate of brain (adjusted difference -0.12%/year, p < 0.05) and spinal cord atrophy (adjusted difference -0.22 mm2/year, p < 0.05). INTERPRETATION: These findings provide evidence that the HLA-DRB1*1501 allele plays a role in MS severity, as measured by long-term disability worsening and a greater extent of inflammatory disease activity and tissue loss. HLA-DRB1*1501 may provide useful information when considering prognosis and treatment decisions in early relapse-onset MS
Visual Snow Syndrome Improves With Modulation of Resting-State Functional MRI Connectivity After Mindfulness-Based Cognitive Therapy: An Open-Label Feasibility Study
BACKGROUND: Visual snow syndrome (VSS) is associated with functional connectivity (FC) dysregulation of visual networks (VNs). We hypothesized that mindfulness-based cognitive therapy, customized for visual symptoms (MBCT-vision), can treat VSS and modulate dysfunctional VNs. METHODS: An open-label feasibility study for an 8-week MBCT-vision treatment program was conducted. Primary (symptom severity; impact on daily life) and secondary (WHO-5; CORE-10) outcomes at Week 9 and Week 20 were compared with baseline. Secondary MRI outcomes in a subcohort compared resting-state functional and diffusion MRI between baseline and Week 20. RESULTS: Twenty-one participants (14 male participants, median 30 years, range 22-56 years) recruited from January 2020 to October 2021. Two (9.5%) dropped out. Self-rated symptom severity (0-10) improved: baseline (median [interquartile range (IQR)] 7 [6-8]) vs Week 9 (5.5 [3-7], P = 0.015) and Week 20 (4 [3-6], P < 0.001), respectively. Self-rated impact of symptoms on daily life (0-10) improved: baseline (6 [5-8]) vs Week 9 (4 [2-5], P = 0.003) and Week 20 (2 [1-3], P < 0.001), respectively. WHO-5 Wellbeing (0-100) improved: baseline (median [IQR] 52 [36-56]) vs Week 9 (median 64 [47-80], P = 0.001) and Week 20 (68 [48-76], P < 0.001), respectively. CORE-10 Distress (0-40) improved: baseline (15 [12-20]) vs Week 9 (12.5 [11-16.5], P = 0.003) and Week 20 (11 [10-14], P = 0.003), respectively. Within-subject fMRI analysis found reductions between baseline and Week 20, within VN-related FC in the i) left lateral occipital cortex (size = 82 mL, familywise error [FWE]-corrected P value = 0.006) and ii) left cerebellar lobules VIIb/VIII (size = 65 mL, FWE-corrected P value = 0.02), and increases within VN-related FC in the precuneus/posterior cingulate cortex (size = 69 mL, cluster-level FWE-corrected P value = 0.02). CONCLUSIONS: MBCT-vision was a feasible treatment for VSS, improved symptoms and modulated FC of VNs. This study also showed proof-of-concept for intensive mindfulness interventions in the treatment of neurological conditions
ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.
BACKGROUND: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. OBJECTIVE: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. METHODS: We obtained conventional PDw and T2w images from 10 patients with relapsing-remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. RESULTS: Our study's ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. CONCLUSION: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished
- …