7 research outputs found

    Influence of the extent of the eigenstates of a system on the resonances formed through its coupling to a field

    Full text link
    We examine resonances for two systems consisting of a particle coupled to a massless boson's field. The field is the free field in the whole space. In the first system, the particle is confined inside a ball. We show that besides the usual energy levels of the particle, which have become complex through the coupling to the field, other resonances are to be taken into account if the ball's radius is comparable to the particle's Compton wavelength. In the second system, the particle is in a finite-depth square-well potential. We study the way the resonances' width depends on the extent of the uncoupled particle's wave functions. In both cases, we limit ourselves to considering two levels of the particle only

    On hybrid states of two and three level atoms

    Full text link
    We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting two photons and choosing a particular coupling function. We also present a rough description of the set of resonances in a model for a three-level atom coupled to the photon field. We give a general picture of matter-field resonances these results fit into.Comment: 33 pages, 12 figure

    On the consequences of the fact that atomic levels have a certain width

    Full text link
    This note presents two ideas. The first one is that quantum theory has a fundamentally perturbative basis but leads to nonperturbative states which it would seem natural to take into account in the foundation of a theory of quantum phenomena. The second one consists in questioning the validity of the present notion of time. Both matters are related to the fact that atomic levels have a certain width. This note is presented qualitatively so as to evidence its main points, independently of the models on which these have been tested.Comment: 8 page
    corecore