7 research outputs found
High burden of viral respiratory co-infections in a cohort of children with suspected pulmonary tuberculosis
Background The presentation of pulmonary tuberculosis (PTB) in young children is often clinically indistinguishable from other common respiratory illnesses, which are frequently infections of viral aetiology. As little is known about the role of viruses in children with PTB, we investigated the prevalence of respiratory viruses in children with suspected PTB at presentation and follow-up. Methods In an observational cohort study, children < 13 years were routinely investigated for suspected PTB in Cape Town, South Africa between December 2015 and September 2017 and followed up for 24 weeks. Nasopharyngeal aspirates (NPAs) were tested for respiratory viruses using multiplex PCR at enrolment, week 4 and 8. Results Seventy-three children were enrolled [median age 22.0 months; (interquartile range 10.0–48.0); 56.2% male and 17.8% HIV-infected. Anti-tuberculosis treatment was initiated in 54.8%; of these 50.0% had bacteriologically confirmed TB. At enrolment, ≥1 virus were detected in 95.9% (70/73) children; most commonly human rhinovirus (HRV) (74.0%). HRV was more frequently detected in TB cases (85%) compared to ill controls (60.6%) (p = 0.02). Multiple viruses were detected in 71.2% of all children; 80% of TB cases and 60.6% of ill controls (p = 0.07). At follow-up, ≥1 respiratory virus was detected in 92.2% (47/51) at week 4, and 94.2% (49/52) at week 8. Conclusions We found a high prevalence of viral respiratory co-infections in children investigated for PTB, irrespective of final PTB diagnosis, which remained high during follow up. Future work should include investigating the whole respiratory ecosystem in combination with pathogen- specific immune responses
Vibrational spectra and normal coordinate analysis of CF 3 OF and CF 3 OCl
The IR spectra (1400 cm −1 to 160 cm −1 ) of the gases at ambient temperature and the Raman spectra (below 1400 cm −1 ) of the liquids near −196°C are reported for CF 3 OF and CF 3 OCl. All fundamentals are assigned under C s symmetry and the results of a normal coordinate analysis are presented. The assignments of Smardzewski and Fox are adopted with one exception for both CF 3 OF and CF 3 OCl: the CF 3 rock of A ″ symmetry is assigned near 430 cm −1 and the two bands between 200 cm −1 and 300 cm −1 are assigned to an A ′ fundamental, involving CF 3 rocking and COX bending and a Δ ν =2 transition in the CF 3 torsion. An extra band at 548 cm −1 in the Raman spectrum of liquid CF 3 COl near −196°C is assigned to a CF 3 OCl ⃛Cl 2 complex. The values of the force constants d (OX) for CF 3 OX molecules are suggested to be near those for X 2 O molecules. More than half the normal modes of A ′ symmetry show extensive mixing of symmetry coordinates. In some of these cases the symmetry coordinate for which the normal mode is named is the largest but not the dominant contributor to the potential energy distribution, while in others this symmetry coordinate is not even the largest contributor to the potential energy distribution. No normal modes of A ′ symmetry are present in which ν(CO), δ s (CF 3 ), δ(COX), or δ(CF 3 ) symmetry coordinates are dominant, and the mode conventionally labeled as v (CO) should be labeled as ν s (CF 3 ). For the remaining A ′ normal modes and all the A ″ normal modes, the symmetry coordinate for which the normal mode is named is dominant in the potential energy distribution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91176/1/1250090406_ftp.pd
Measure of molecular diversity within the Trypanosoma brucei subspecies Trypanosoma brucei brucei and Trypanosoma brucei gambiense as revealed by genotypic characterization
We have evaluated whether sequence polymorphisms in the rRNA intergenic spacer region can be used to study the relatedness c.' two subspecies of Trypanosoma brucei. Thirteen T. bnrcei isolates made up of 6 T. b. brucei and 7 T. b. gambiense were analyzed using restriction fragment length polymorphism (RFLP). By PCR-based restriction mapping of the ITS I-5.8S-ITS2 ribosomal repeat unit. we found a fingerprint pattern that separately identifies each of the two subspecies analyzed, with unique restriction fragments observed in all but f of the T. b. gambiense "human" isolates. Interestingly, the restriction profile for a virulent group 2 T. b. gambiense human isolate revealed an unusual RFLP pattern different from the profile of other human isolates. Sequencing data from four representatives of each of the two subspecies indicated that the intergenic spacer region had a conserved ITS- l and a variable 5.8S with unique transversions, insertions, or deletions. The ITS-2 regions contained a single repeated element at similar positions in all isolates examined. but not in 2 of the human isolates. A unique 4-by ; C3A} sequence was found within the 5.8S region of human T. b. gambiense isolates. Phylogenetic analysis of the data suggests that their common ancestor was a ronhuman animal pathogen and that human pathogenicity might have evolved secondarily. Our data show that cryptic species within the T. brucei group can be distinguished by differences in the PCR-RFLP profile of the rDNA repeat