2 research outputs found

    Thomson scattering near the high-fluence target surface of the Magnum-PSI linear plasma generator

    No full text
    In the quest to long-term operation of high-power magnetically confined fusion devices, it is crucial to control the particle and heat loads on the wall. In order to predict these loads, understanding of the plasma-wall interaction is important. Near the wall surface, the plasma is accelerated towards the Debye sheath edge. In plasma conditions with high density and low temperature, the interaction between the incoming plasma and recycled neutrals can become important. In this paper, we present incoherent Thomson Scattering (TS) measurements in the near-surface region of the Magnum-PSI linear plasma generator. To enable TS measurements close to the plasma target of Magnum-PSI, a stray light suppression up to a factor 104 was achieved, while retaining high transmission. By incrementally moving the target along the magnetic field, this adapted system was used down to 1.9 mm from the target. In the last 10–15 mm in front of the surface, the electron density as well as temperature were observed to decrease significantly. Under the assumption of constant particle flux in this region, the density drop indicates plasma acceleration. In that case, the measurements can be interpreted to show the plasma presheath, and its lengthscale: ~ 1 cm. The electron cooling indicates an energy loss channel for the electrons near the wall. A reduced electron temperature near the sheath entrance leads to lower estimates of particle and energy flux, as well a

    Recent Progress on Microwave Imaging Technology and New Physics Results

    No full text
    Strike-point sweeping and real-time-controlled (RTC) impurity seeding are both expected to be needed on JET following its upgrade to an all-metal wall with enhanced neutral-beam heating, thereby anticipating exhaust-control requirements plus the materials planned for ITER. Preliminary trials in the previous carbon device have combined these techniques in high-triangularity type I H-mode plasmas, using a VUV spectroscopic signal for feedback control of nitrogen injection. Compared with earlier unswept feedforward counterparts, similar strong mitigation of divertor heat load between ELMs was achieved in swept RTC cases for less than half the integrated nitrogen input and correspondingly less adverse effect upon other properties. Both sweeping and RT control contributed to this improvement. Time-average normalized energy confinement < H(98y)>(t) similar to 1, Greenwald density fraction < f(Gwd)>(t) similar to 0.9 and particularly purity denoted by effective ionic charge < Z(eff)>(t) approximate to 1.7, all remained closer to good reference levels. Transient effluxes in ELMs were also less affected, however, and would require separate active control
    corecore