126 research outputs found

    Detecting extra dimensions with gravity wave spectroscopy: the black string brane-world

    Get PDF
    Using the black string between two branes as a model of a brane-world black hole, we compute the gravity wave perturbations and identify the features arising from the additional polarizations of the graviton. The standard four-dimensional gravitational wave signal acquires late-time oscillations due to massive modes of the graviton. The Fourier transform of these oscillations shows a series of spikes associated with the masses of the Kaluza-Klein modes, providing in principle a spectroscopic signature of extra dimensions.Comment: 4 pages, 5 figures. Comments on the frequency and detectability of the massive mode signal added, and title modified. Version accepted for publication in Phys. Rev. Let

    Observational Constraints on the Averaged Universe

    Full text link
    Averaging in general relativity is a complicated operation, due to the general covariance of the theory and the non-linearity of Einstein's equations. The latter of these ensures that smoothing spacetime over cosmological scales does not yield the same result as solving Einstein's equations with a smooth matter distribution, and that the smooth models we fit to observations need not be simply related to the actual geometry of spacetime. One specific consequence of this is a decoupling of the geometrical spatial curvature term in the metric from the dynamical spatial curvature in the Friedmann equation. Here we investigate the consequences of this decoupling by fitting to a combination of HST, CMB, SNIa and BAO data sets. We find that only the geometrical spatial curvature is tightly constrained, and that our ability to constrain dark energy dynamics will be severely impaired until we gain a thorough understanding of the averaging problem in cosmology.Comment: 6 pages, 4 figure

    The cosmological gravitational wave background from primordial density perturbations

    Get PDF
    We discuss the gravitational wave background generated by primordial density perturbations evolving during the radiation era. At second-order in a perturbative expansion, density fluctuations produce gravitational waves. We calculate the power spectra of gravitational waves from this mechanism, and show that, in principle, future gravitational wave detectors could be used to constrain the primordial power spectrum on scales vastly different from those currently being probed by large-scale structure. As examples we compute the gravitational wave background generated by both a power-law spectrum on all scales, and a delta-function power spectrum on a single scale.Comment: 8 Page

    Delocalization of brane gravity by a bulk black hole

    Get PDF
    We investigate the analogue of the Randall-Sundrum brane-world in the case when the bulk contains a black hole. Instead of the static vacuum Minkowski brane of the RS model, we have an Einstein static vacuum brane. We find that the presence of the bulk black hole has a dramatic effect on the gravity that is felt by brane observers. In the RS model, the 5D graviton has a stable localized zero-mode that reproduces 4D gravity on the brane at low energies. With a bulk black hole, there is no such solution -- gravity is delocalized by the 5D horizon. However, the brane does support a discrete spectrum of metastable massive bound states, or quasinormal modes, as was recently shown to be the case in the RS scenario. These states should dominate the high frequency component of the bulk gravity wave spectrum on a cosmological brane. We expect our results to generalize to any bulk spacetime containing a Killing horizon.Comment: 7 pages, 6 figure

    Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle

    Get PDF
    A suggested solution to the dark energy problem is the void model, where accelerated expansion is replaced by Hubble-scale inhomogeneity. In these models, density perturbations grow on a radially inhomogeneous background. This large scale inhomogeneity distorts the spherical Baryon Acoustic Oscillation feature into an ellipsoid which implies that the bump in the galaxy correlation function occurs at different scales in the radial and transverse correlation functions. We compute these for the first time, under the approximation that curvature gradients do not couple the scalar modes to vector and tensor modes. The radial and transverse correlation functions are very different from those of the concordance model, even when the models have the same average BAO scale. This implies that if void models are fine-tuned to satisfy average BAO data, there is enough extra information in the correlation functions to distinguish a void model from the concordance model. We expect these new features to remain when the full perturbation equations are solved, which means that the radial and transverse galaxy correlation functions can be used as a powerful test of the Copernican Principle.Comment: 12 pages, 8 figures, matches published versio

    A gravitational wave window on extra dimensions

    Get PDF
    We report on the possibility of detecting a submillimetre-sized extra dimension by observing gravitational waves (GWs) emitted by pointlike objects orbiting a braneworld black hole. Matter in the `visible' universe can generate a discrete spectrum of high frequency GWs with amplitudes moderately weaker than the predictions of general relativity (GR), while GW signals generated by matter on a `shadow' brane hidden in the bulk are potentially strong enough to be detected using current technology. We know of no other astrophysical phenomena that produces GWs with a similar spectrum, which stresses the need to develop detectors capable of measuring this high-frequency signature of large extra dimensions.Comment: 9 pages, 5 figure
    • …
    corecore