590 research outputs found
Compile-Time Analysis and Specialization of Clocks in Concurrent Programs
Clocks are a mechanism for providing synchronization barriers in concurrent programming languages. They are usually implemented using primitive communication mechanisms and thus spare the programmer from reasoning about low-level implementation details such as remote procedure calls and error conditions. Clocks provide flexibility, but programs often use them in specific ways that do not require their full implementation. In this paper, we describe a tool that mitigates the overhead of general-purpose clocks by statically analyzing how programs use them and choosing optimized implementations when available. We tackle the clock implementation in the standard library of the X10 programming language—a parallel, distributed object-oriented language. We report our findings for a small set of analyses and benchmarks. Our tool only adds a few seconds to analysis time, making it practical to use as part of a compilation chain
Stealth Branes
We discuss the brane world model of Dvali, Gabadadze and Porrati in which
branes evolve in an infinite bulk and the brane curvature term is added to the
action. If Z_2 symmetry between the two sides of the brane is not imposed, we
show that the model admits the existence of "stealth branes" which follow the
standard 4D internal evolution and have no gravitational effect on the bulk
space. Stealth branes can nucleate spontaneosly in a Minkowski bulk. This
process is described by the standard 4D quantum cosmology formalism with
tunneling boundary conditions for the brane world wave function. The notorious
ambiguity in the choice of boundary conditions is fixed in this case due to the
presence of the embedding spacetime. We also point to some problematic aspects
of models admitting stealth brane solutions.Comment: 24 pages; Final version, to appear in Phys. Rev. D. The discussion of
"embeddability obstruction" is removed (thanks to Takahiro Tanaka who
convinced us that there is no such obstruction
Kondo effect in crossed Luttinger liquids
We study the Kondo effect in two crossed Luttinger liquids, using Boundary
Conformal Field Theory. We predict two types of critical behaviors: either a
two-channel Kondo fixed point with a nonuniversal Wilson ratio, or a new theory
with an anomalous response identical to that found by Furusaki and Nagaosa (for
the Kondo effect in a single Luttinger liquid). Moreover, we discuss the
relevance of perturbations like channel anisotropy, and we make links with the
Kondo effect in a two-band Hubbard system modeled by a channel-dependent
Luttinger Hamiltonian. The suppression of backscattering off the impurity
produces a model similar to the four-channel Kondo theory.Comment: 7 pages, RevteX, to be published in Physical Review
Spin Injection and Detection in Magnetic Nanostructures
We study theoretically the spin transport in a nonmagnetic metal connected to
ferromagnetic injector and detector electrodes. We derive a general expression
for the spin accumulation signal which covers from the metallic to the
tunneling regime. This enables us to discuss recent controversy on spin
injection and detection experiments. Extending the result to a superconducting
device, we find that the spin accumulation signal is strongly enhanced by
opening of the superconducting gap since a gapped superconductor is a low
carrier system for spin transport but not for charge. The enhancement is also
expected in semiconductor devices.Comment: 4 pages, 3 figure
Helium Clustering in Neutron-Rich Be Isotopes
Measurements of the helium-cluster breakup and neutron removal cross sections
for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied
in the 30 to 42 MeV/u energy range where reaction measurements are proposed to
be sensitive to the cluster content of the ground-state wave-function. These
measurements provide a comprehensive survey of the decay processes of the Be
isotopes by which the valence neutrons are removed revealing the underlying
alpha-alpha core-cluster structure. The measurements indicate that clustering
in the Be isotopes remains important up to the drip-line nucleus 14^Be and that
the dominant helium-cluster structure in the neutron-rich Be isotopes
corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure
Spin current in ferromagnet/insulator/superconductor junctions
A theory of spin polarized tunneling spectroscopy based on a scattering
theory is given for tunneling junctions between ferromagnets and d-wave
superconductors. The spin filtering effect of an exchange field in the
insulator is also treated. We clarify that the properties of the Andreev
reflection are largely modified due to a presence of an exchange field in the
ferromagnets, and consequently the Andreev reflected quasiparticle shows an
evanescent-wave behavior depending on the injection angle of the quasiparticle.
Conductance formulas for the spin current as well as the charge current are
given as a function of the applied voltage and the spin-polarization in the
ferromagnet for arbitrary barrier heights. It is shown that the surface bound
states do not contribute to the spin current and that the zero-bias conductance
peak expected for a d-wave superconductor splits into two peaks under the
influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure
Numerical analysis of the radio-frequency single-electron transistor operation
We have analyzed numerically the response and noise-limited charge
sensitivity of a radio-frequency single-electron transistor (RF-SET) in a
non-superconducting state using the orthodox theory. In particular, we have
studied the performance dependence on the quality factor Q of the tank circuit
for Q both below and above the value corresponding to the impedance matching
between the coaxial cable and SET.Comment: 14 page
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
Superlattice Growth via MBE and Green’s Function Techniques
A model has been developed to simulate the growth of arrays consisting of a substrate on which alternating layers of quantum dots (QDs) and spacer layers are epitaxially grown. The substrate and spacer layers are modeled as an anisotropic elastic half-space, and the QDs are modeled as point inclusions buried within the half-space. In this model, the strain at the free surface of this half-space due to the buried point QDs is calculated, and a scalar measure of the strain at the surface is subsequently determined. New point QDs are placed on the surface where the previously calculated scalar strain measure is a minimum. Following available DFT results, this scalar strain measure is a weighted average of the in-plane strains. This model is constructed under the assumption that diffusional anisotropy can be neglected, and thus, the results are more in agreement with results from experiments of growth of SiGe QDs than experiments involving QDs of (In,Ga)As
- …