899 research outputs found
Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom
We consider the problem of verifying deadlock freedom for symmetric cache
coherence protocols. In particular, we focus on a specific form of deadlock
which is useful for the cache coherence protocol domain and consistent with the
internal definition of deadlock in the Murphi model checker: we refer to this
deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire
system gets blocked and is unable to make any transition. Cache coherence
protocols consist of N symmetric cache agents, where N is an unbounded
parameter; thus the verification of s-deadlock freedom is naturally a
parameterized verification problem. Parametrized verification techniques work
by using sound abstractions to reduce the unbounded model to a bounded model.
Efficient abstractions which work well for industrial scale protocols typically
bound the model by replacing the state of most of the agents by an abstract
environment, while keeping just one or two agents as is. However, leveraging
such efficient abstractions becomes a challenge for s-deadlock: a violation of
s-deadlock is a state in which the transitions of all of the unbounded number
of agents cannot occur and so a simple abstraction like the one above will not
preserve this violation. In this work we address this challenge by presenting a
technique which leverages high-level information about the protocols, in the
form of message sequence dia- grams referred to as flows, for constructing
invariants that are collectively stronger than s-deadlock. Efficient
abstractions can be constructed to verify these invariants. We successfully
verify the German and Flash protocols using our technique
Higher dimensional inhomogeneous dust collapse and cosmic censorship
We investigate the occurrence and nature of a naked singularity in the
gravitational collapse of an inhomogeneous dust cloud described by higher
dimensional Tolman-Bondi space-times. The naked singularities are found to be
gravitationally strong in the sense of Tipler. Higher dimensions seem to favour
black holes rather than naked singularities.Comment: 15 pages, LaTeX, 1 figure, 2 table
Does the Red Queen reign in the kingdom of digital organisms?
In competition experiments between two RNA viruses of equal or almost equal
fitness, often both strains gain in fitness before one eventually excludes the
other. This observation has been linked to the Red Queen effect, which
describes a situation in which organisms have to constantly adapt just to keep
their status quo. I carried out experiments with digital organisms
(self-replicating computer programs) in order to clarify how the competing
strains' location in fitness space influences the Red-Queen effect. I found
that gains in fitness during competition were prevalent for organisms that were
taken from the base of a fitness peak, but absent or rare for organisms that
were taken from the top of a peak or from a considerable distance away from the
nearest peak. In the latter two cases, either neutral drift and loss of the
fittest mutants or the waiting time to the first beneficial mutation were more
important factors. Moreover, I found that the Red-Queen dynamic in general led
to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure
B(E1) Strengths from Coulomb Excitation of 11Be
The (E1;) strength for Be has been extracted from
intermediate energy Coulomb excitation measurements, over a range of beam
energies using a new reaction model, the extended continuum discretized coupled
channels (XCDCC) method. In addition, a measurement of the excitation cross
section for Be+Pb at 38.6 MeV/nucleon is reported. The (E1)
strength of 0.105(12) efm derived from this measurement is consistent
with those made previously at 60 and 64 MeV/nucleon, i n contrast to an
anomalously low result obtained at 43 MeV/nucleon. By coupling a
multi-configuration description of the projectile structure with realistic
reaction theory, the XCDCC model provides for the first time a fully quantum
mechanical description of Coulomb excitation. The XCDCC calculations reveal
that the excitation process involves significant contributions from nuclear,
continuum, and higher-order effects. An analysis of the present and two earlier
intermediate energy measurements yields a combined B(E1) strength of 0.105(7)
efm. This value is in good agreement with the value deduced
independently from the lifetime of the state in Be, and has a
comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.
Single-Proton Removal Reaction Study of 16B
The low-lying level structure of the unbound system B has been
investigated via single-proton removal from a 35 MeV/nucleon C beam. The
coincident detection of the beam velocity B fragment and neutron allowed
the relative energy of the in-flight decay of B to be reconstructed. The
resulting spectrum exhibited a narrow peak some 85 keV above threshold. It is
argued that this feature corresponds to a very narrow (100 keV)
resonance, or an unresolved multiplet, with a dominant + configuration which decays by d-wave neutron
emission.Comment: 16 pages, 5 figures, 1 table, submitted to Phys. Lett.
Bounded Model Checking of Concurrent Data Types on Relaxed Memory Models: A Case Study
Many multithreaded programs employ concurrent data types to safely share data among threads. However, highly-concurrent algorithms for even seemingly simple data types are difficult to implement correctly, especially when considering the relaxed memory ordering models commonly employed by today’s multiprocessors. The formal verification of such implementations is challenging as well because the high degree of concurrency leads to a large number of possible executions. In this case study, we develop a SAT-based bounded verification method and apply it to a representative example, a well-known two-lock concurrent queue algorithm. We first formulate a correctness criterion that specifically targets failures caused by concurrency; it demands that all concurrent executions be observationally equivalent to some serial execution. Next, we define a relaxed memory model that conservatively approximates several common shared-memory multiprocessors. Using commit point specifications, a suite of finite symbolic tests, a prototype encoder, and a standard SAT solver, we successfully identify two failures of a naive implementation that can be observed only under relaxed memory models. We eliminate these failures by inserting appropriate memory ordering fences into the code. The experiments confirm that our approach provides a valuable aid for desigining and implementing concurrent data types
Higher dimensional dust collapse with a cosmological constant
The general solution of the Einstein equation for higher dimensional (HD)
spherically symmetric collapse of inhomogeneous dust in presence of a
cosmological term, i.e., exact interior solutions of the Einstein field
equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter
background. The solution is then matched to exterior HD Scwarschild-de Sitter.
A brief discussion on the causal structure singularities and horizons is
provided. It turns out that the collapse proceed in the same way as in the
Minkowski background, i.e., the strong curvature naked singularities form and
that the higher dimensions seem to favor black holes rather than naked
singularities.Comment: 7 Pages, no figure
Helium Clustering in Neutron-Rich Be Isotopes
Measurements of the helium-cluster breakup and neutron removal cross sections
for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied
in the 30 to 42 MeV/u energy range where reaction measurements are proposed to
be sensitive to the cluster content of the ground-state wave-function. These
measurements provide a comprehensive survey of the decay processes of the Be
isotopes by which the valence neutrons are removed revealing the underlying
alpha-alpha core-cluster structure. The measurements indicate that clustering
in the Be isotopes remains important up to the drip-line nucleus 14^Be and that
the dominant helium-cluster structure in the neutron-rich Be isotopes
corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure
Anisotropy at the end of the cosmic ray spectrum?
The starburst galaxies M82 and NGC253 have been proposed as the primary
sources of cosmic rays with energies above eV. For energies \agt
10^{20.3} eV the model predicts strong anisotropies. We calculate the
probabilities that the latter can be due to chance occurrence. For the highest
energy cosmic ray events in this energy region, we find that the observed
directionality has less than 1% probability of occurring due to random
fluctuations. Moreover, during the first 5 years of operation at Auger, the
observation of even half the predicted anisotropy has a probability of less
than to occur by chance fluctuation. Thus, this model can be subject
to test at very small cost to the Auger priors budget and, whatever the outcome
of that test, valuable information on the Galactic magnetic field will be
obtained.Comment: Final version to be published in Physical Review
- …