20,058 research outputs found
The spectral index image of the radio halo in the cluster Abell 520 hosting a famous bow shock
Synchrotron radio emission is being detected from an increasing number of
galaxy clusters. Spectral index images are a powerful tool to investigate the
origin, nature, and connection of these sources with the dynamical state of the
cluster. The aim of this work is to investigate the spectral index distribution
of the radio halo in the galaxy cluster A520, a complex system from an optical,
radio, and X-ray point of view. We present deep Very Large Array observations
in total intensity at 325 and 1400 MHz. We produced and analyzed spectral index
images of the radio halo in this frequency range at a resolution of 39" and 60"
and looked for possible correlations with the thermal properties of the
cluster. We find an integrated radio halo spectral index alpha(325-1400) ~
1.12. No strong radial steepening is present and the spectral index
distribution is intrinsically complex with fluctuations only partially due to
measurement errors. The radio halo integrated spectral index and the cluster
temperature follow the global trend observed in other galaxy clusters although
a strong point-to-point correlation between the spectral index and the thermal
gas temperature has not been observed. The complex morphology in the spectral
index image of the radio halo in A520 is in agreement with the primary models
for radio halo formation. The flatness of the radial profile suggests that the
merger is still ongoing and is uniformly and continuously (re-) accelerating
the population of relativistic electrons responsible of the radio emission even
at large (~ 1 Mpc) distances from the cluster center.Comment: 12 pages, 10 figures, A&A accepte
Universal dynamical decoupling of a single solid-state spin from a spin bath
Controlling the interaction of a single quantum system with its environment
is a fundamental challenge in quantum science and technology. We dramatically
suppress the coupling of a single spin in diamond with the surrounding spin
bath by using double-axis dynamical decoupling. The coherence is preserved for
arbitrary quantum states, as verified by quantum process tomography. The
resulting coherence time enhancement is found to follow a general scaling with
the number of decoupling pulses. No limit is observed for the decoupling action
up to 136 pulses, for which the coherence time is enhanced more than 25 times
compared to spin echo. These results uncover a new regime for experimental
quantum science and allow to overcome a major hurdle for implementing quantum
information protocols.Comment: submitted 24 May 2010; published online 9 September 201
Differences in the trophic ecology of micronekton driven by diel vertical migration.
Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to carbon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which are often understudied, have different energetic requirements that might be reflected in their trophic ecology. We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (ÎŽ 15N values) of micronekton species collected seasonally between 0 and 1250âm depth to explore differences in the trophic ecology of vertically migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit depth-related increases in ÎŽ 15N values mirroring their main prey, zooplankton. Higher variance in ÎŽ 15N values of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially reworked, very small suspended particles. Migrators have higher ÎŽ 15N values than nonmigrators inhabiting the epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of variation in ÎŽ 15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of micronekton species are driven by vertical migrations
Earth - venus trajectories, 1968-69, volume 4, part b
Earth-venus trajectories 1968-196
Spectrum of injuries resulting from gunshot wounds in car hijacking: a South African experience.
BACKGROUND: Car hijacking, known as âcarjackingâ, is a form of aggravated robbery of a vehicle from the driver frequently involving firearm and is common in South Africa. There is, however, little literature on the spectrum of injuries sustained by victims of car hijacking. The study aimed to describe the spectrum of gunshot wound-related (GSW) injuries and review our experience of management of victims of car hijacking in our trauma center based in South Africa.
METHODS:
A retrospective review was conducted during an 8-year period from January 2010 to January 2018 on all patients who presented with any form of GSW after a car hijacking incident.
RESULTS: During the 8-year study period, a total of 101 patients were identified. Seventy-four percent were male (75 of 101) and the mean age was 34 years. The mean time from injury to arrival at our trauma center was 7 hours (rural district: 10âhours, urban district: 4âhours; p<0.001). Seventy-five percent (76 of 101) of all patients sustained GSWs to multiple body regions, whereas the remaining 25% (25 of 101) were confined to a single body region. The most common region involved was the chest (48 cases), followed by the abdomen (46 cases) and neck (34 cases). Sixty-three of the 101 (62%) patients required one or more operative interventions. The most common procedure was laparotomy (28 cases), followed by vascular (20 cases) and neck (14) exploration. Eighteen percent (18 of 101) of all patients required intensive care unit admission. The mean length of hospital stay was 7 days. The overall morbidity was 13% (16 of 101) and the overall mortality was 18% (18 of 101).
DISCUSSION: The spectrum of injuries from GSW related to car hijacking commonly involves close range GSWs to multiple body regions. Torso trauma is common and a substantial proportion of victims require major operative interventions. The mortality from these injuries is significant.
LEVELS OF EVIDENCE: Level III
Double marking revisited
In 2002, the Qualifications and Curriculum Authority (QCA) published the report of an independent panel of experts into maintaining standards at Advanced Level (A-Level). One of its recommendations was for: âlimited experimental double marking of scripts in subjects such as English to determine whether the strategy would signi-ficantly reduce errors of measurementâ (p. 24). This recommendation provided the impetus for this paper which reviews the all but forgotten literature on double marking and considers its relevance now
Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schr\"odinger equation
We consider in detail the self-trapping of a soliton from a wave pulse that
passes from a defocussing region into a focussing one in a spatially
inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger
equation in which the dispersion coefficient changes its sign from normal to
anomalous. The model has direct applications to dispersion-decreasing nonlinear
optical fibers, and to natural waveguides for internal waves in the ocean. It
is found that, depending on the (conserved) energy and (nonconserved) mass of
the initial pulse, four qualitatively different outcomes of the pulse
transformation are possible: decay into radiation; self-trapping into a single
soliton; formation of a breather; and formation of a pair of counterpropagating
solitons. A corresponding chart is drawn on a parametric plane, which
demonstrates some unexpected features. In particular, it is found that any kind
of soliton(s) (including the breather and counterpropagating pair) eventually
decays into pure radiation with the increase of the energy, the initial mass
being kept constant. It is also noteworthy that a virtually direct transition
from a single soliton into a pair of symmetric counterpropagating ones seems
possible. An explanation for these features is proposed. In two cases when
analytical approximations apply, viz., a simple perturbation theory for broad
initial pulses, or the variational approximation for narrow ones, comparison
with the direct simulations shows reasonable agreement.Comment: 18 pages, 10 figures, 1 table. Phys. Rev. E, in pres
High-Resolution Spectroscopy of FUors
High-resolution spectroscopy was obtained of the FUors FU Ori and V1057 Cyg
between 1995 and 2002 with SOFIN at NOT and with HIRES at Keck I. During those
years FU Ori remained about 1 mag. (in B) below its 1938-39 maximum brightness,
but V1057 Cyg (B ~ 10.5 at peak in 1970-71) faded from about 13.5 to 14.9 and
then recovered slightly. Their photospheric spectra resemble a rotating G0 Ib
supergiant, with v_eq sin i = 70 km/s for FU Ori and 55 km/s for V1057 Cyg. As
V1057 Cyg faded, P Cyg structure in Halpha and the IR CaII lines strengthened
and a complex shortward-displaced shell spectrum increased in strength,
disappeared in 1999, and reappeared in 2001. Night-to-night changes in the wind
structure of FU Ori show evidence of sporadic infall. The strength of P Cyg
absorption varied cyclically with a period of 14.8 days, with phase stability
maintained over 3 seasons, and is believed to be the rotation period. The
structure of the photospheric lines also varies cyclically, but with a period
of 3.54 days. A similar variation may be present in V1057 Cyg. As V1057 Cyg has
faded, the emission lines of a pre-existing low-excitation chromosphere have
emerged, so we believe the `line doubling' in V1057 Cyg is produced by these
central emission cores in the absorption lines, not by orbital motion in an
inclined Keplerian disk. No dependence of v_eq sin i on wavelength or
excitation potential was detected in either star, again contrary to expectation
for a self-luminous accretion disk. Nor are critical lines in the near infrared
accounted for by synthetic disk spectra. A rapidly rotating star near the edge
of stability (Larson 1980), can better explain these observations. FUor
eruptions may not be a property of ordinary TTS, but may be confined to a
special subspecies of rapid rotators having powerful quasi-permanent winds.Comment: 41 pages (including 32 figures and 9 tables); ApJ, in press; author
affiliation, figs. 3 and 9 correcte
An experimental study of the dual-fuel performance of a small compression ignition diesel engine operating with three gaseous fuels
A dual-fuel engine is a compression ignition (CI) engine where the primary gaseous fuel source is premixed with air as it enters the combustion chamber. This homogenous mixture is ignited by a small quantity of diesel, the âpilotâ, that is injected towards the end of the compression stroke. In the present study, a direct-injection CI engine, was fuelled with three different gaseous fuels: methane, propane, and butane. The engine performance at various gaseous concentrations was recorded at 1500 r/min and quarter, half, and three-quarters relative to full a load of 18.7 kW. In order to investigate the combustion performance, a novel three-zone heat release rate analysis was applied to the data. The resulting heat release rate data are used to aid understanding of the performance characteristics of the engine in dual-fuel mode.
Data are presented for the heat release rates, effects of engine load and speed, brake specific energy consumption of the engine, and combustion phasing of the three different primary gaseous fuels.
Methane permitted the maximum energy substitution, relative to diesel, and yielded the most significant reductions in CO2. However, propane also had significant reductions in CO2 but had an increased diffusional combustion stage which may lend itself to the modern high-speed direct-injection engine
- âŠ