2 research outputs found

    A cluster-randomised controlled trial comparing school and community-based deworming for soil transmitted helminth control in school-age children: The CoDe-STH trial protocol

    Get PDF
    Background: Current guidelines and targets for soil-transmitted helminth (STH) control focus on school-based deworming for school-age children, given the high risk of associated morbidity in this age group. However, expanding deworming to all age groups may achieve improved STH control among both the community in general and school-age children, by reducing their risk of reinfection. This trial aims to compare school-based targeted deworming with community-wide mass deworming in terms of impact on STH infections among school-age children. Methods: The CoDe-STH (Community Deworming against STH) trial is a cluster-randomised controlled trial (RCT) in 64 primary schools in Dak Lak province, Vietnam. The control arm will receive one round of school-based targeted deworming with albendazole, while in the intervention arm, community-wide mass deworming with albendazole will be implemented alongside school-based deworming. Prevalence of STH infections will be measured in school-age children at baseline and 12 months following deworming. The primary outcome is hookworm prevalence in school-age children at 12 months, by quantitative PCR. Analysis will be intention-to-treat, with outcomes compared between study arms using generalised linear and non-linear mixed models. Additionally, cost-effectiveness of mass and targeted deworming will be calculated and compared, and focus group discussions and interviews will be used to assess acceptability and feasibility of deworming approaches. Individual based stochastic models will be used to predict the impact of mass and targeted deworming strategies beyond the RCT timeframe to assess the likelihood of parasite population 'bounce-back' if deworming is ceased due to low STH prevalence. Discussion: The first large-scale trial comparing mass and targeted deworming for STH control in South East Asia will provide key information for policy makers regarding the optimal design of STH control programs. Trial registration: ACTRN12619000309189

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    Get PDF
    OBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS - Nine SNPs at eight loci were associated with proinsulin levels (P < 5 Ă— 10-8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/ C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 3 10-4), improved b-cell function (P = 1.1 Ă— 10-5), and lower risk of T2D (odds ratio 0.88; P = 7.8 Ă— 10-6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS - We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore