2,165 research outputs found
The Effect of NAG–thiazoline on Morphology and Surface Hydrophobicity of Escherichia Coli
The β-hexosaminidase inhibitor and structural analog of the putative oxazolium reaction intermediate of lytic transglycosylases, N-acetylglucosamine thiazoline (NAG–thiazoline), was synthesized in 46% overall yield and tested as an inhibitor of Escherichia coli growth. NAG–thiazoline, at concentrations up to 1 mg/ml, was not found to affect the viability of E. coli DH5α
Identification of a New Family of Enzymes with Potential \u3cem\u3eO\u3c/em\u3e-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria
Background: The metabolism of the rigid bacterial cell wall heteropolymer peptidoglycan is a dynamic process requiring continuous biosynthesis and maintenance involving the coordination of both lytic and synthetic enzymes. The O-acetylation of peptidoglycan has been proposed to provide one level of control on these activities as this modification inhibits the action of the major endogenous lytic enzymes, the lytic transglycosylases. The O-acetylation of peptidoglycan also inhibits the activity of the lysozymes which serve as the first line of defense of host cells against the invasion of bacterial pathogens. Despite this central importance, there is a dearth of information regarding peptidoglycan O-acetylation and nothing has previously been reported on its de-acetylation.
Results: Homology searches of the genome databases have permitted this first report on the identification of a potential family of O-Acetylpeptidoglycan esterases (Ape). These proteins encoded in the genomes of a variety of both Gram-negative and Gram-positive bacteria, including a number of important human pathogens such as species of Neisseria, Helicobacter, Campylobacter, and Bacillus anthracis, have been organized into three families based on amino acid sequence similarities with family 1 being further divided into three sub-families. The genes encoding these proteins are shown to be clustered with Peptidoglycan O-acetyltransferases (Pat) and in some cases, together with other genes involved in cell wall metabolism. Representative bacteria that encode the Ape proteins were experimentally shown to produce O-acetylated peptidoglycan.
Conclusion: The hypothetical proteins encoded by the pat and ape genes have been organized into families based on sequence similarities. The Pat proteins have sequence similarity to Pseudomonas aeruginosa AlgI, an integral membrane protein known to participate in the O-acetylation of the exopolysaccaride, alginate. As none of the bacteria that harbor the pat genes produce alginate, we propose that the Pat proteins serve to O-acetylate peptidoglycan which is known to be a maturation event occurring in the periplasm. The Ape sequences have amino acid sequence similarity to the CAZy CE 3 carbohydrate esterases, a family previously known to be composed of only O-acetylxylan esterases. They are predicted to contain the α/β hydrolase fold associated with the GDSL and TesA hydrolases and they possess the signature motifs associated with the catalytic residues of the CE3 esterases. Specific signature sequence motifs were identified for the Ape proteins which led to their organization into distinct families. We propose that by expressing both Pat and Ape enzymes, bacteria would be able to obtain a high level of localized control over the degradation of peptidoglycan through the attachment and removal of O-linked acetate. This would facilitate the efficient insertion of pores and flagella, localize spore formation, and control the level of general peptidoglycan turnover
Angiotensin-Converting Enzyme 2: The First Decade
The
renin-angiotensin system (RAS) is a critical
regulator of hypertension, primarily through the
actions of the vasoactive peptide Ang II, which
is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in
blood pressure. The discovery of ACE2, which
primarily metabolises Ang II into the
vasodilatory Ang-(1-7), has added a new
dimension to the traditional RAS. As a result
there has been huge interest in ACE2 over the
past decade as a potential therapeutic for
lowering blood pressure, especially elevation
resulting from excess Ang II. Studies focusing
on ACE2 have helped to reveal other actions of
Ang-(1-7), outside vasodilation, such as
antifibrotic and antiproliferative effects.
Moreover, investigations focusing on ACE2 have
revealed a variety of roles not just catalytic
but also as a viral receptor and amino acid
transporter. This paper focuses on what is
known about ACE2 and its biological roles,
paying particular attention to the regulation of
ACE2 expression. In light of the entrance of
human recombinant ACE2 into clinical trials, we
discuss the potential use of ACE2 as a
therapeutic and highlight some pertinent
questions that still remain unanswered about
ACE2
Forming Ministers or Training Leaders? An Exploration of Practice and the Pastoral Imagination
This thesis is a piece of practitioner research located in the context of the author’s practice as Tutor in Pastoral Studies at Regent’s Park College. It is written from the context of change, both from denominational reviews, university restructuring and government funding and from wider changes in theological education and arises from a sense of dissatisfaction that recent debates have tended to separate out a discussion about the preparation for ministry from an understanding of ministry itself. The thesis explores ideas of ministry and leadership, arguing that, in the face of the challenge posed by leadership language and thought, a historic and contemporary Baptist understanding of ministry is best understood through a dialectical model of ministry, a habitus, rather than through a habitus of leadership. It then charts the history of preparation for ministry among Baptists and explores the contemporary developments in language and suggests that formation is the most appropriate and helpful description of the process
Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria
BACKGROUND: The metabolism of the rigid bacterial cell wall heteropolymer peptidoglycan is a dynamic process requiring continuous biosynthesis and maintenance involving the coordination of both lytic and synthetic enzymes. The O-acetylation of peptidoglycan has been proposed to provide one level of control on these activities as this modification inhibits the action of the major endogenous lytic enzymes, the lytic transglycosylases. The O-acetylation of peptidoglycan also inhibits the activity of the lysozymes which serve as the first line of defense of host cells against the invasion of bacterial pathogens. Despite this central importance, there is a dearth of information regarding peptidoglycan O-acetylation and nothing has previously been reported on its de-acetylation. RESULTS: Homology searches of the genome databases have permitted this first report on the identification of a potential family of O-Acetylpeptidoglycan esterases (Ape). These proteins encoded in the genomes of a variety of both Gram-negative and Gram-positive bacteria, including a number of important human pathogens such as species of Neisseria, Helicobacter, Campylobacter, and Bacillus anthracis, have been organized into three families based on amino acid sequence similarities with family 1 being further divided into three sub-families. The genes encoding these proteins are shown to be clustered with Peptidoglycan O-acetyltransferases (Pat) and in some cases, together with other genes involved in cell wall metabolism. Representative bacteria that encode the Ape proteins were experimentally shown to produce O-acetylated peptidoglycan. CONCLUSION: The hypothetical proteins encoded by the pat and ape genes have been organized into families based on sequence similarities. The Pat proteins have sequence similarity to Pseudomonas aeruginosa AlgI, an integral membrane protein known to participate in the O-acetylation of the exopolysaccaride, alginate. As none of the bacteria that harbor the pat genes produce alginate, we propose that the Pat proteins serve to O-acetylate peptidoglycan which is known to be a maturation event occurring in the periplasm. The Ape sequences have amino acid sequence similarity to the CAZy CE 3 carbohydrate esterases, a family previously known to be composed of only O-acetylxylan esterases. They are predicted to contain the α/β hydrolase fold associated with the GDSL and TesA hydrolases and they possess the signature motifs associated with the catalytic residues of the CE3 esterases. Specific signature sequence motifs were identified for the Ape proteins which led to their organization into distinct families. We propose that by expressing both Pat and Ape enzymes, bacteria would be able to obtain a high level of localized control over the degradation of peptidoglycan through the attachment and removal of O-linked acetate. This would facilitate the efficient insertion of pores and flagella, localize spore formation, and control the level of general peptidoglycan turnover
Representation of Maximally Regular Textures in Human Visual Cortex
This research was supported by National Science Foundation INSPIRE Grant 1248076, which was awarded to Y.L. and A.M.N.Peer reviewedPublisher PD
Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro.
OBJECTIVE: Staphylococcus aureus is the most frequent causative organism of infective endocarditis (IE) and is characterized by thrombus formation on a cardiac valve that can embolize to a distant site. Previously, we showed that S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) can stimulate rapid platelet aggregation. METHODS AND RESULTS: In this study we investigate their relative roles in mediating aggregate formation under physiological shear conditions. Platelets failed to interact with immobilized wild-type S. aureus (Newman) at shear rates \u3c500\u3es(-1) but rapidly formed an aggregate at shear rates \u3e800 s(-1). Inactivation of the ClfA gene eliminated aggregate formation at any shear rate. Using surrogate hosts that do not interact with platelets bacteria overexpressing ClfA supported rapid aggregate formation under high shear with a similar profile to Newman whereas bacteria overexpressing FnBPA did not. Fibrinogen binding to ClfA was found to be essential for aggregate formation although fibrinogen-coated surfaces only allowed single-platelets to adhere under all shear conditions. Blockade of the platelet immunoglobulin receptor Fc gammaRIIa inhibited aggregate formation. CONCLUSIONS: Thus, fibrinogen and IgG binding to ClfA is essential for aggregate formation under arterial shear conditions and may explain why S. aureus is the major cause of IE
- …