1,280 research outputs found

    Ex. 279-US-405

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Ex. 279-US-405

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Ex. 277-US-403

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Ex. 277-US-403

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Ex. 281-US-403

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Ex. 281-US-403

    Get PDF
    Report: The Relative Merits of the Modified Sag-Tape Method for Determining Instream Flow Requirement

    Modeling Spatially and Temporally Complex Range Dynamics When Detection is Imperfect

    Get PDF
    Species distributions are determined by the interaction of multiple biotic and abiotic factors, which produces complex spatial and temporal patterns of occurrence. As habitats and climate change due to anthropogenic activities, there is a need to develop species distribution models that can quantify these complex range dynamics. In this paper, we develop a dynamic occupancy model that uses a spatial generalized additive model to estimate non-linear spatial variation in occupancy not accounted for by environmental covariates. The model is flexible and can accommodate data from a range of sampling designs that provide information about both occupancy and detection probability. Output from the model can be used to create distribution maps and to estimate indices of temporal range dynamics. We demonstrate the utility of this approach by modeling long-term range dynamics of 10 eastern North American birds using data from the North American Breeding Bird Survey. We anticipate this framework will be particularly useful for modeling species’ distributions over large spatial scales and for quantifying range dynamics over long temporal scales

    Migratory Behavior and Winter Geography Drive Differential Range Shifts of Eastern Birds in Response to Recent Climate Change

    Get PDF
    Over the past half century, migratory birds in North America have shown divergent population trends relative to resident species, with the former declining rapidly and the latter increasing. The role that climate change has played in these observed trends is not well understood, despite significant warming over this period. We used 43 y of monitoring data to fit dynamic species distribution models and quantify the rate of latitudinal range shifts in 32 species of birds native to eastern North America. Since the early 1970s, species that remain in North America throughout the year, including both resident and migratory species, appear to have responded to climate change through both colonization of suitable area at the northern leading edge of their breeding distributions and adaption in place at the southern trailing edges. Neotropical migrants, in contrast, have shown the opposite pattern: contraction at their southern trailing edges and no measurable shifts in their northern leading edges. As a result, the latitudinal distributions of temperate-wintering species have increased while the latitudinal distributions of neotropical migrants have decreased. These results raise important questions about the mechanisms that determine range boundaries of neotropical migrants and suggest that these species may be particularly vulnerable to future climate change. Our results highlight the potential importance of climate change during the nonbreeding season in constraining the response of migratory species to temperature changes at both the trailing and leading edges of their breeding distributions. Future research on the interactions between breeding and nonbreeding climate change is urgently needed

    Identifying artificially deformed crania

    Full text link
    In this paper we report on a new discriminant function for the identification of artificially deformed crania. Development of the function, based on a sample of deformed and undeformed crania from the Philippines, required visual classification of the sample into deformed and undeformed groups. Working from the observation that deformed crania display flattened frontal and occipital regions, the sample was seriated based on degree of flattening; classification was based on the results of this seriation. The discriminant function, calculated using curvature indices, required only six simple measurements: arc and chord measurements for the frontal (glabella to bregma), parietals (bregma to lambda) and occipital (lambda to opisthion). The function was designed to be conservative, in that a deformed cranium may be classified as undeformed, but the opposite should not occur. Our function classified the undeformed crania with 100% accuracy and deformed crania with 76.9% accuracy, for a total of 91.9% agreement with visual classification. In order to evaluate whether the function is applicable for samples from outside the Philippines, a double blind test was conducted with a large sample of deformed and undeformed crania from a broad geographical and temporal range. For this sample, the function agreed with visual classification in 89.7% of cases; 98.8% of undeformed crania were correctly classified, while deformed crania were identified with 73.7% accuracy. These results demonstrate the utility of the new discriminant function for the classification of artificially deformed crania from diverse contexts. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57385/1/910_ftp.pd
    • …
    corecore