542 research outputs found
First measurement of the total gravitational quadrupole moment of a black widow companion
We present the first measurement of the gravitational quadrupole moment of the companion star of a spider pulsar, namely the black widow PSR J2051–0827. To this end, we have re-analysed radio timing data using a new model that is able to account for periastron precession caused by tidal and centrifugal deformations of the star as well as by general relativity. The model allows for a time-varying component of the quadrupole moment, thus self-consistently accounting for the ill-understood orbital period variations observed in these systems. Our analysis results in the first detection of orbital precession in a spider system at ω˙=−68∘.6+0∘.9−0∘.5 yr−1 and the most accurate determination of orbital eccentricity for PSR J2051–0827 with e = (4.2 ± 0.1) × 10−5. We show that the variable quadrupole component is about 100 times smaller than the average quadrupole moment Q¯=−2.2+0.6−1×1041 kgm2. We discuss how accurate modelling of high-precision optical light curves of the companion star will allow its apsidal motion constant to be derived from our results
Quasiperiodic ∼5–60 s fluctuations of VLF signals propagating in the Earth-ionosphere waveguide: a result of pulsating auroral particle precipitation?
Subionospheric very low frequency and low-frequency (VLF/LF) transmitter signals received at middle-latitude ground stations at nighttime were found to exhibit pulsating behavior with periods that were typically in the ∼5–60 s range but sometimes reached ∼100 s. The amplitude versus time shape of the pulsations was often triangular or zigzag-like, hence the term “zigzag effect.” Variations in the envelope shape were usually in the direction of faster development than recovery. Episodes of zigzag activity at Siple, Antarctica (L ∼4.3), and Saskatoon, Canada (L ∼4.2), were found to occur widely during the predawn hours and were not observed during geomagnetically quiet periods. The fluctuations appeared to be caused by ionospheric perturbations at the ∼ 85 km nighttime VLF reflection height in regions poleward of the plasmapause. We infer that in the case of the Saskatoon and Siple data, the perturbations were centered within ∼500 km of the stations and within ∼ 100–200 km of the affected signal paths. Their horizontal extent is inferred to have been in the range ∼50–200 km. The assembled evidence, supported by Corcuffs [1996] recent research at Kerguelen (L ∼3.7), suggests that the underlying cause of the effect was pulsating auroral precipitation. The means by which that precipitation produces ionospheric perturbations at 85 km is not yet clear. Candidate mechanisms include (1) acoustic waves that propagate downward from precipitation regions above the ∼ 85 km VLF reflection level; (2) quasi-static perturbation electric fields that give rise to E×B drifts of the bottomside ionosphere; (3) secondary ionization production and subsequent decay at or below 85 km. Those zigzag fluctuations exhibiting notably faster development than recovery probably originated in secondary ionization produced near 85 km by the more energetic (E >40 keV) electrons in the incident electron spectrum
Optical, X-ray, and γ-ray observations of the candidate transitional millisecond pulsar 4FGL J0427.8-6704
We present an optical, X-ray, and γ-ray study of 1SXPS J042749.2-670434, an eclipsing X-ray binary that has an associated γ-ray counterpart, 4FGL J0427.8-6704. This association has led to the source being classified as a transitional millisecond pulsar (tMSP) in an accreting state. We analyse 10.5 yr of Fermi LAT data and detect a γ-ray eclipse at the same phase as optical and X-ray eclipses at the >5 σ level, a significant improvement on the 2.8 σ level of the previous detection. The confirmation of this eclipse solidifies the association between the X-ray source and the γ-ray source, strengthening the tMSP classification. However, analysis of several optical data sets and an X-ray observation do not reveal a change in the source’s median brightness over long time-scales or a bi-modality on short time-scales. Instead, the light curve is dominated by flickering, which has a correlation time of 2.6 min alongside a potential quasi-periodic oscillation at ∼21 min. The mass of the primary and secondary stars is constrained to be M1=1.43+0.33−0.19 M⊙ and M2=0.3+0.17−0.12 M⊙ through modelling of the optical light curve. While this is still consistent with a white dwarf primary, we favour the tMSP in a low accretion state classification due to the significance of the γ-ray eclipse detection
The orbit and companion of PSR J1622-0315: variable asymmetry and a massive neutron star
The companion to PSR J1622-0315, one of the most compact known redback millisecond pulsars, shows extremely low irradiation despite its short orbital period. We model this system to determine the binary parameters, combining optical observations from the New Technology Telescope in 2017 and the Nordic Optical Telescope in 2022 with the binary modeling code ICARUS. We find a best-fit neutron star mass of 2.3 ± 0.4 M⊙, and a companion mass of 0.15 ± 0.02 M⊙. We detect for the first time low-level irradiation from asymmetry in the minima as well as a change in the asymmetry of the maxima of its light curves over five years. Using starspot models, we find better fits than those from symmetric direct heating models, with consistent orbital parameters. We discuss an alternative scenario where the changing asymmetry is produced by a variable intrabinary shock. In summary, we find that PSR J1622-0315 combines low irradiation with variable light-curve asymmetry and a relatively high neutron star mass
Relic neutrino masses and the highest energy cosmic rays
We consider the possibility that a large fraction of the ultrahigh energy
cosmic rays are decay products of Z bosons which were produced in the
scattering of ultrahigh energy cosmic neutrinos on cosmological relic
neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with
the one predicted in the above Z-burst scenario and determine the required mass
of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic
neutrino flux via a maximum likelihood analysis. We show that the value of the
neutrino mass obtained in this way is fairly robust against variations in
presently unknown quantities, like the amount of neutrino clustering, the
universal radio background, and the extragalactic magnetic field, within their
anticipated uncertainties. Much stronger systematics arises from different
possible assumptions about the diffuse background of ordinary cosmic rays from
unresolved astrophysical sources. In the most plausible case that these
ordinary cosmic rays are protons of extragalactic origin, one is lead to a
required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence
level. This range narrows down considerably if a particular universal radio
background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required
flux of ultrahigh energy cosmic neutrinos near the resonant energy should be
detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory,
otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX
Ultra-High Energy Neutrino Fluxes and Their Constraints
Applying our recently developed propagation code we review extragalactic
neutrino fluxes above 10^{14} eV in various scenarios and how they are
constrained by current data. We specifically identify scenarios in which the
cosmogenic neutrino flux, produced by pion production of ultra high energy
cosmic rays outside their sources, is considerably higher than the
"Waxman-Bahcall bound". This is easy to achieve for sources with hard injection
spectra and luminosities that were higher in the past. Such fluxes would
significantly increase the chances to detect ultra-high energy neutrinos with
experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.
Mass estimates from optical modelling of the new TRAPUM redback PSR J1910−5320
Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. ICARUS optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or
M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar
Using the set point concept to allow water distribution system skeletonization preserving water quality constraints
[EN] Water distribution networks were included in the catalogue of critical infrastructures by different institutions as the European
Council. One of the vulnerabilities of a water distribution networks consists of the contamination due to accidental or provoked
events. Therefore, it is increasingly common to develop water quality models which allow the study of these threats. Many hydraulic
models use algorithms with a high computational cost. Therefore, any strategy to accelerate these algorithms is an important
contribution to the problem. This paper proposes a method to simplify branched areas of the network without losing information
regarding water quality.This article has been possible inside the actions developed by the researchers of UPV involved in the project “Mejora de las técnicas de llenado y operación de redes de abastecimiento de agua (OPERAGUA)”. The number reference of the project is DPI2009-13674.Martínez-Solano, FJ.; Iglesias Rey, PL.; Mora Meliá, D.; Fuertes Miquel, VS. (2014). Using the set point concept to allow water distribution system skeletonization preserving water quality constraints. Procedia Engineering. 2014(89):213-219. https://doi.org/10.1016/j.proeng.2014.11.179S21321920148
A rapid optical and X-ray timing study of the neutron star X-ray binary Swift J1858.6–0814
We present a rapid timing analysis of optical (HiPERCAM and ULTRACAM) and X-ray (NICER) observations of the X-ray transient Swift J1858.6−0814 during 2018 and 2019. The optical light curves show relatively slow, large amplitude (∼1 mag in gs) ‘blue’ flares (i.e. stronger at shorter wavelengths) on time-scales of ∼minutes as well as fast, small amplitude (∼0.1 mag in gs) ‘red’ flares (i.e. stronger at longer wavelengths) on time-scales of ∼seconds. The ‘blue’ and ‘red’ flares are consistent with X-ray reprocessing and optically thin synchrotron emission, respectively, similar to what is observed in other X-ray binaries. The simultaneous optical versus soft- and hard-band X-ray light curves show time- and energy-dependent correlations. The 2019 March 4 and parts of the June data show a nearly symmetric positive cross-correlations (CCFs) at positive lags consistent with simple X-ray disc reprocessing. The soft- and hard-band CCFs are similar and can be reproduced if disc reprocessing dominates in the optical and one component (disc or synchrotron Comptonization) dominates both the soft and hard X-rays. A part of the 2019 June data shows a very different CCFs. The observed positive correlation at negative lag in the soft band can be reproduced if the optical synchrotron emission is correlated with the hot flow X-ray emission. The observed timing properties are in qualitative agreement with the hybrid inner hot accretion flow model, where the relative role of the different X-ray and optical components that vary during the course of the outburst, as well as on shorter time-scales, govern the shape of the optical/X-ray CCFs
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
- …