2,307 research outputs found

    The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis

    Get PDF
    The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems

    Transcriptome and Genome-Wide Analysis of the Arabidopsis Stem Cell Regulator WUS

    Get PDF
    The genomic and transcriptional analysis of the transcription factor WUSCHEL (WUS), explored in this issue of Developmental Cell, represents the next generation of stem cell analysis in Arabidopsis. The resources generated provide insights into WUS function and a wealth of new information for the entire field

    First Opinion: More than a “Peanut Man”

    Get PDF

    CLAVATA1, a regulator of meristem and flower development in Arabidopsis

    Get PDF
    We have investigated the effects on plant development of mutations in the Arabidopsis thaliana CLAVATA1 gene. In clavata1 plants, vegetative, inflorescence and floral meristems are all enlarged relative to wild type. The apical meristem can fasciate in the more severe mutant alleles, and this fasciation can occur prior to the transition to flowering. Flowers of clavata1 plants can have increased numbers of organs in all four whorls, and can also have additional whorls not present in wild-type flowers. Double mutant combinations of clavata1 with agamous, apetala2, apetala3 and pistillata indicate that CLAVATA1 controls the underlying floral meristem structure upon which these homeotic genes act. Double mutant combinations of clavata1 with apetala1 and leafy indicate CLAVATA1 plays a role in establishing and maintaining floral meristem identity, in addition to its role in controlling meristem size. In support of this, RNA expression patterns of AGAMOUS and APETALA1 are altered in clavata1 flowers

    The coupling of a stereoscope and Macintosh computer

    Get PDF
    This study has described a method for combining a Pedestal stereoscope and Macintosh Plus computer. A working model was constructed and its physical limitations were discussed. Existing software written for the Macintosh computer was also reviewed. The clinical feasibility was explored and possible directions for future research were recommended

    Core pathways controlling shoot meristem maintenance

    Full text link
    Essential to the function of shoot meristems in plants to act as sites of continuous organ and tissue formation is the ability of cells within the meristem to remain undifferentiated and proliferate indefinitely. These are characteristics of the stem cells within meristems that are critical for their growth properties. Stem cells are found in tight association with the stem cell niche—those cells that signal to maintain stem cells. Shoot meristems are unique among stem cell systems in that the stem cell niche is a constantly changing population of recent daughter stem cells. Recent progress from Arabidopsis and other systems have uncovered a large number of genes with defined roles in meristem structure and maintenance. This review will focus on well‐studied pathways that represent signaling between the stem cells and the niche, that prevent ectopic differentiation of stem cells, that regulate the chromatin status of stem cell factors, and that reveal intersection of hormone signaling and meristem maintenance. WIREs Dev Biol 2013, 2:671–684. doi: 10.1002/wdev.110 For further resources related to this article, please visit the WIREs website .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99612/1/wdev110.pd

    POLTERGEIST Encodes a Protein Phosphatase 2C that Regulates CLAVATA Pathways Controlling Stem Cell Identity at Arabidopsis Shoot and Flower Meristems

    Get PDF
    AbstractBackground: Receptor kinases are a large gene family in plants and have more than 600 members in Arabidopsis. Receptor kinases in plants regulate a broad range of developmental processes, including steroid hormone perception, organ elongation, self-incompatibility, and abscission. Intracellular signaling components for receptor kinases in plants are largely unknown. The CLAVATA 1 (CLV1) receptor kinase in Arabidopsis regulates stem cell identity and differentiation through its repression of WUSCHEL (WUS) expression. Mutations at the POLTERGEIST (POL) gene were previously described as phenotypic suppressors of mutations within the CLV1 gene. Genetic evidence placed POL as a downstream regulator of CLAVATA1 signaling.Results: We provide evidence that POL functions in both the CLV1-WUS pathway and a novel WUS-independent CLV1 pathway regulating stem cell identity. We demonstrate that POL encodes a protein phosphatase 2C (PP2C) with a predicted nuclear localization sequence, indicating that it has a role in signal transduction downstream of the CLV1 receptor. The N terminus of POL has a possible regulatory function, and the C terminus has PP2C-like phosphatase catalytic activity. Although the POL catalytic domain is conserved in other PP2Cs, the POL protein represents a unique subclass of plant PP2Cs. POL is broadly expressed throughout the plant.Conclusions: POL represents a novel component of the CLV1 receptor kinase signaling pathway. The ubiquitous expression of POL and pol phenotypes outside the meristem suggest that POL may be a common regulator of many signaling pathways
    corecore