2 research outputs found

    HESS Opinions: The complementary merits of competing modelling philosophies in hydrology

    Get PDF
    In hydrology, two somewhat competing philosophies form the basis of most process-based models. At one endpoint of this continuum are detailed, high-resolution descriptions of small-scale processes that are numerically integrated to larger scales (e.g. catchments). At the other endpoint of the continuum are spatially lumped representations of the system that express the hydrological response via, in the extreme case, a single linear transfer function. Many other models, developed starting from these two contrasting endpoints, plot along this continuum with different degrees of spatial resolutions and process complexities. A better understanding of the respective basis as well as the respective shortcomings of different modelling philosophies has the potential to improve our models. In this paper we analyse several frequently communicated beliefs and assumptions to identify, discuss and emphasize the functional similarity of the seemingly competing modelling philosophies. We argue that deficiencies in model applications largely do not depend on the modelling philosophy, although some models may be more suitable for specific applications than others and vice versa, but rather on the way a model is implemented. Based on the premises that any model can be implemented at any desired degree of detail and that any type of model remains to some degree conceptual, we argue that a convergence of modelling strategies may hold some value for advancing the development of hydrological models.Water Resource

    Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data

    No full text
    Process-based hydrological models seek to represent the dominant hydrological processes in a catchment. However, due to unavoidable incompleteness of knowledge, the construction of “fidelius” process-based models depends largely on expert judgment. We present a systematic approach that treats models as hierarchical assemblages of hypotheses (conservation principles, system architecture, process parameterization equations, and parameter specification), which enables investigating how the hierarchy of model development decisions impacts model fidelity. Each model development step provides information that progressively changes our uncertainty (increases, decreases, or alters) regarding the input-state-output behavior of the system. Following the principle of maximum entropy, we introduce the concept of “minimally restrictive process parameterization equations—MR-PPEs,” which enables us to enhance the flexibility with which system processes can be represented, and to thereby investigate the important role that the system architectural hypothesis (discretization of the system into subsystem elements) plays in determining model behavior. We illustrate and explore these concepts with synthetic and real-data studies, using models constructed from simple generic buckets as building blocks, thereby paving the way for more-detailed investigations using sophisticated process-based hydrological models. We also discuss how proposed MR-PPEs can bridge the gap between current process-based modeling and machine learning. Finally, we suggest the need for model calibration to evolve from a search over “parameter spaces” to a search over “function spaces.”.Water Resource
    corecore