58,262 research outputs found
A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise
The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel model could improve the recognition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc. Am. 127, 943?954 (2010)]. In the current study an anatomically justified feedback loop was used to automatically regulate separate attenuation values for each auditory channel. This arrangement resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Comparisons between multi-talker babble and pink noise interference conditions suggest that the benefit originates from the model?s ability to modify the amount of suppression in each channel separately according to the spectral shape of the interfering sounds
H-NMR spin-echo measurements of the static and dynamic spin properties in -(BETS)FeCl
H-NMR spin-echo measurements of the spin-echo decay with a
decay rate 1/ and the frequency shift under applied
magnetic field = 9 T along the a-axis over a temperature
range 2.0180 K are reported for a single crystal of the organic conductor
-(BETS)FeCl. It provides the spin dynamic and static
properties in the paramagnetic metal (PM) and antiferromagnetic insulator (AFI)
states as well as across the PMAFI phase transition. A large slow beat
structure in the spin-echo decay is observed with a typical beat frequency of
7 kHz and it varies across the spectrum. Its origin is attributed to
the HH dipole interactions rather than to the much larger
dipolar field contribution from the Fe electrons (spin = 5/2). A
simple phenomenological model provides an excellent fit to the data. The
dominant H-NMR frequency shift comes from the dipolar field from the 3d
Fe ions, and the Fe Fe exchange interactions ()
( includes the dd exchange interactions through the electrons)
have a substantial effect to the local field at the proton sites expecially at
low temperatures. A good fit is obtained with = - 1.7 K. The data of
the spin-echo decay rate 1/ indicates that there is a significant change
in the slow fluctuations of the local magnetic field at the H-sites on
traversing the PM to AFI phase. This evidence supports earlier reports that the
PMAFI phase transition in -(BETS)FeCl is driven
magnetically and first order.Comment: 9 pages, 10 figures, resubmitted to Phys. Rev. B in response to
comments of Editor and reviewers on March 23, 200
Investigation of the effects of inlet shapes on fan noise radiation
The effect of inlet shape on forward radiated fan tone noise directivities was investigated under experimentally simplified zero flow conditions. Simulated fan tone noise was radiated to the far field through various shaped zero flow inlets. Baseline data were collected for the simplest baffled and unbaffled straight pipe inlets. These data compared well with prediction. The more general inlet shapes tested were the conical, circular, and exponential surfaces of revolution and an asymmetric inlet achieved by cutting a straight pipe inlet at an acute angle. Approximate theories were developed for these general shapes and some comparisons with data are presented. The conical and exponential shapes produced directivities that differed considerably from the baseline data while the circular shape produced directivities similar to the baseline data. The asymmetric inlet produced asymmetric directivities with significant reductions over the straight pipe data for some angles
Analytic models of ducted turbomachinery tone noise sources. Volume 2: Subprogram documentation
Analytical models were developed for computing the periodic sound pressures of subsonic fans in an infinite hardwall annular duct with uniform flow. The computer programs are described which are used for numerical computations of sound pressure mode amplitudes. The data are applied to the acoustic properties of turbomachinery
Analytic models of ducted turbomachinery tone noise sources. Volume 1: Analysis
The analytic models developed for computing the periodic sound pressure of subsonic fans and compressors in an infinite, hardwall annular duct with uniform flow are described. The basic sound-generating mechanism is the scattering into sound waves of velocity disturbances appearing to the rotor or stator blades as a series of harmonic gusts. The models include component interactions and rotor alone
Analytic models of ducted turbomachinery tone noise sources. Volume 3: Program test case results
Computer programs for analyzing the acoustic properties of turbomachinery with ducted flow were developed. The models include component interactions and rotor alone. Test case results determined from the computer programs are presented
Public or private religiosity: which Is protective for adolescent substance use and by what pathways?
While it is well understood that adolescent religiosity is associated with the use and abuse of licit and illicit substances, few studies have revealed the pathways through which religiosity buffers youth against involvement in such behavior. The aim of this study is to examine the complexity of the relationships between religiosity, sensation seeking, injunctive norms, and adolescent substance use. Using a national sample of adolescents (N = 18,614), negative binomial regression and path analysis were used to examine the various components of the relationship between religiosity and the use of cigarettes, alcohol, and marijuana. Results indicate that private religiosity moderates the relationship between key risk factors and substance use. Public and private religiosity were associated with tolerant injunctive substance use norms which, in turn, were associated with substance use. Implications for research and theory related to religiosity and adolescent substance use are discussed
The Wilson Effective K\"ahler Potential For Supersymmetric Nonlinear Sigma Models
Renormalization group methods are used to determine the evolution of the low
energy Wilson effective action for supersymmetric nonlinear sigma models in
four dimensions. For the case of supersymmetric models, the
K\"ahler potential is determined exactly and is shown to exhibit a nontrivial
ultraviolet fixed point in addition to a trivial infrared fixed point. The
strong coupling behavior of the theory suggests the possible existence of
additional relevant operators or nonperturbative degrees of freedom.Comment: 9 pages, LaTeX, 1 eps figur
- …