262 research outputs found

    Cost effectiveness of population based BRCA1 founder mutation testing in Sephardi Jewish women.

    Get PDF
    BACKGROUND: Population-based BRCA1/BRCA2 founder-mutation testing has been demonstrated as cost effective compared with family history based testing in Ashkenazi Jewish women. However, only 1 of the 3 Ashkenazi Jewish BRCA1/BRCA2 founder mutations (185delAG[c.68_69delAG]), 5382insC[c.5266dupC]), and 6174delT[c.5946delT]) is found in the Sephardi Jewish population (185delAG[c.68_69delAG]), and the overall prevalence of BRCA mutations in the Sephardi Jewish population is accordingly lower (0.7% compared with 2.5% in the Ashkenazi Jewish population). Cost-effectiveness analyses of BRCA testing have not previously been performed at these lower BRCA prevalence levels seen in the Sephardi Jewish population. Here we present a cost-effectiveness analysis for UK and US populations comparing population testing with clinical criteria/family history-based testing in Sephardi Jewish women. STUDY DESIGN: A Markov model was built comparing the lifetime costs and effects of population-based BRCA1 testing, with testing using family history-based clinical criteria in Sephardi Jewish women aged ≥30 years. BRCA1 carriers identified were offered magnetic resonance imaging/mammograms and risk-reducing surgery. Costs are reported at 2015 prices. Outcomes include breast cancer, ovarian cancer, and excess deaths from heart disease. All costs and outcomes are discounted at 3.5%. The time horizon is lifetime, and perspective is payer. The incremental cost-effectiveness ratio per quality-adjusted life-year was calculated. Parameter uncertainty was evaluated through 1-way and probabilistic sensitivity analysis. RESULTS: Population testing resulted in gain in life expectancy of 12 months (quality-adjusted life-year = 1.00). The baseline discounted incremental cost-effectiveness ratio for UK population-based testing was £67.04/quality-adjusted life-year and for US population was 308.42/quality−adjustedlife−year.Resultswererobustinthe1−waysensitivityanalysis.Theprobabilisticsensitivityanalysisshowed100308.42/quality-adjusted life-year. Results were robust in the 1-way sensitivity analysis. The probabilistic sensitivity analysis showed 100% of simulations were cost effective at £20,000/quality-adjusted life-year UK and the 100,000/quality-adjusted life-year US willingness-to-pay thresholds. Scenario analysis showed that population testing remains cost effective in UK and US populations, even if premenopausal oophorectomy does not reduce breast cancer risk or if hormone replacement therapy compliance is nil. CONCLUSION: Population-based BRCA1 testing is highly cost effective compared with clinical criteria-driven approach in Sephardi Jewish women. This supports changing the paradigm to population-based BRCA testing in the Jewish population, regardless of Ashkenazi/Sephardi ancestry

    Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of the UK Cancer Genetics Group.

    Get PDF
    Genetic testing for hereditary cancer predisposition has evolved rapidly in recent years with the discovery of new genes, but there is much debate over the clinical utility of testing genes for which there are currently limited data regarding the degree of associated cancer risk. To address the discrepancies that have arisen in the provision of these tests across the UK, the UK Cancer Genetics Group facilitated a 1-day workshop with representation from the majority of National Health Service (NHS) clinical genetics services. Using a preworkshop survey followed by focused discussion of genes without prior majority agreement for inclusion, we achieved consensus for panels of cancer genes with sufficient evidence for clinical utility, to be adopted by all NHS genetics services. To support consistency in the delivery of these tests and advice given to families across the country, we also developed management proposals for individuals who are found to have pathogenic mutations in these genes. However, we fully acknowledge that the decision regarding what test is most appropriate for an individual family rests with the clinician, and will depend on factors including specific phenotypic features and the family structure

    Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry.

    Get PDF
    BACKGROUND: Population-based BRCA1/BRCA2 testing has been found to be cost-effective compared with family history-based testing in Ashkenazi-Jewish women were >30 years old with 4 Ashkenazi-Jewish grandparents. However, individuals may have 1, 2, or 3 Ashkenazi-Jewish grandparents, and cost-effectiveness data are lacking at these lower BRCA prevalence estimates. We present an updated cost-effectiveness analysis of population BRCA1/BRCA2 testing for women with 1, 2, and 3 Ashkenazi-Jewish grandparents. STUDY DESIGN: Decision analysis model. METHODS: Lifetime costs and effects of population and family history-based testing were compared with the use of a decision analysis model. 56% BRCA carriers are missed by family history criteria alone. Analyses were conducted for United Kingdom and United States populations. Model parameters were obtained from the Genetic Cancer Prediction through Population Screening trial and published literature. Model parameters and BRCA population prevalence for individuals with 3, 2, or 1 Ashkenazi-Jewish grandparent were adjusted for the relative frequency of BRCA mutations in the Ashkenazi-Jewish and general populations. Incremental cost-effectiveness ratios were calculated for all Ashkenazi-Jewish grandparent scenarios. Costs, along with outcomes, were discounted at 3.5%. The time horizon of the analysis is "life-time," and perspective is "payer." Probabilistic sensitivity analysis evaluated model uncertainty. RESULTS: Population testing for BRCA mutations is cost-saving in Ashkenazi-Jewish women with 2, 3, or 4 grandparents (22-33 days life-gained) in the United Kingdom and 1, 2, 3, or 4 grandparents (12-26 days life-gained) in the United States populations, respectively. It is also extremely cost-effective in women in the United Kingdom with just 1 Ashkenazi-Jewish grandparent with an incremental cost-effectiveness ratio of £863 per quality-adjusted life-years and 15 days life gained. Results show that population-testing remains cost-effective at the £20,000-30000 per quality-adjusted life-years and $100,000 per quality-adjusted life-years willingness-to-pay thresholds for all 4 Ashkenazi-Jewish grandparent scenarios, with ≥95% simulations found to be cost-effective on probabilistic sensitivity analysis. Population-testing remains cost-effective in the absence of reduction in breast cancer risk from oophorectomy and at lower risk-reducing mastectomy (13%) or risk-reducing salpingo-oophorectomy (20%) rates. CONCLUSION: Population testing for BRCA mutations with varying levels of Ashkenazi-Jewish ancestry is cost-effective in the United Kingdom and the United States. These results support population testing in Ashkenazi-Jewish women with 1-4 Ashkenazi-Jewish grandparent ancestry

    Current detection rates and time-to-detection of all identifiable BRCA carriers in the Greater London population.

    Get PDF
    BACKGROUND: BRCA carrier identification offers opportunities for early diagnoses, targeted treatment and cancer prevention. We evaluate BRCA- carrier detection rates in general and Ashkenazi Jewish (AJ) populations across Greater London and estimate time-to-detection of all identifiable BRCA carriers. METHODS: BRCA carrier data from 1993 to 2014 were obtained from National Health Service genetic laboratories and compared with modelled predictions of BRCA prevalence from published literature and geographical data from UK Office for National Statistics. Proportion of BRCA carriers identified was estimated. Prediction models were developed to fit BRCA detection rate data. BRCA carrier identification rates were evaluated for an 'Angelina Jolie effect'. Maps for four Greater London regions were constructed, and their relative BRCA detection rates were compared. Models developed were used to predict future time-to-identify all detectable BRCA carriers in AJ and general populations. RESULTS: Until 2014, only 2.6% (3072/111 742 estimated) general population and 10.9% (548/4985 estimated) AJ population BRCA carriers have been identified in 16 696 608 (AJ=190 997) Greater London population. 57% general population and 54% AJ mutations were identified through cascade testing. Current detection rates mirror linear fit rather than parabolic model and will not identify all BRCA carriers. Addition of unselected ovarian/triple-negative breast cancer testing would take >250 years to identify all BRCA carriers. Doubling current detection rates can identify all 'detectable' BRCA carriers in the general population by year 2181, while parabolic and triple linear rates can identify 'detectable' BRCA carriers by 2084 and 2093, respectively. The linear fit model can identify 'detectable' AJ carriers by 2044. We did not find an Angelina Jolie effect on BRCA carrier detection rates. There was a significant difference in BRCA detection rates between geographical regions over time (P<0.001). CONCLUSIONS: The majority of BRCA carriers have not been identified, missing key opportunities for prevention/earlier diagnosis. Enhanced and new strategies/approaches are needed

    Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer.

    Get PDF
    Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing TGCT risk. To further evaluate the association of recently proposed risk SNPs with TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 3,206 cases and 7,422 controls. Our analysis provides independent replication of the associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 × 10-2; P-meta = 3.92 × 10-8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 (P = 7.96 × 10-11; P-meta = 1.55 × 10-19; nearest gene PRTG). Case-only analyses did not reveal specific associations with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk loci with biologically plausible roles in developmental transcriptional regulation, further highlighting the importance of this phenomenon in TGCT oncogenesis

    Weekly COVID-19 testing with household quarantine and contact tracing is feasible and would probably end the epidemic.

    Get PDF
    The COVID-19 epidemic can probably be ended and normal life restored, perhaps quite quickly, by weekly SARS-CoV-2 RNA testing together with household quarantine and systematic contact tracing. Isolated outbreaks could then be contained by contact tracing, supplemented if necessary by temporary local reintroduction of population testing or lockdown. Leading public health experts have recommended that this should be tried in a demonstration project in which a medium-sized city introduces weekly testing and lifts lockdown completely. The idea was not considered by the groups whose predictions have guided UK policy, so we have examined the statistical case for such a study. The combination of regular testing with strict household quarantine, which was not analysed in their models, has remarkable power to reduce transmission to the community from other household members as well as providing earlier diagnosis and facilitating rapid contact tracing

    Quantifying prediction of pathogenicity for within-codon concordance (PM5) using 7541 functional classifications of BRCA1 and MSH2 missense variants.

    Get PDF
    PURPOSE: Conditions and thresholds applied for evidence weighting of within-codon concordance (PM5) for pathogenicity vary widely between laboratories and expert groups. Because of the sparseness of available clinical classifications, there is little evidence for variation in practice. METHODS: We used as a truthset 7541 dichotomous functional classifications of BRCA1 and MSH2, spanning 311 codons of BRCA1 and 918 codons of MSH2, generated from large-scale functional assays that have been shown to correlate excellently with clinical classifications. We assessed PM5 at 5 stringencies with incorporation of 8 in silico tools. For each analysis, we quantified a positive likelihood ratio (pLR, true positive rate/false positive rate), the predictive value of PM5-lookup in ClinVar compared with the functional truthset. RESULTS: pLR was 16.3 (10.6-24.9) for variants for which there was exactly 1 additional colocated deleterious variant on ClinVar, and the variant under examination was equally or more damaging when analyzed using BLOSUM62. pLR was 71.5 (37.8-135.3) for variants for which there were 2 or more colocated deleterious ClinVar variants, and the variant under examination was equally or more damaging than at least 1 colocated variant when analyzed using BLOSUM62. CONCLUSION: These analyses support the graded use of PM5, with potential to use it at higher evidence weighting where more stringent criteria are met
    • …
    corecore