21 research outputs found

    Pioglitazone Improves Myocardial Blood Flow and Glucose Utilization in Nondiabetic Patients With Combined Hyperlipidemia A Randomized, Double-Blind, Placebo-Controlled Study

    Get PDF
    ObjectivesThis study’s aim was to examine whether treatment with pioglitazone, added to conventional lipid-lowering therapy, would improve myocardial glucose utilization (MGU) and blood flow (MBF) in nondiabetic patients with familial combined hyperlipidemia (FCHL).BackgroundThiazolidinediones were found to improve insulin sensitivity and MGU in type 2 diabetes and MBF in Mexican Americans with insulin resistance. Familial combined hyperlipidemia is a complex genetic disorder conferring a high risk of premature coronary artery disease, characterized by high serum cholesterol and/or triglyceride, low high-density lipoprotein (HDL) cholesterol, and insulin resistance.MethodsWe undertook a randomized, double-blind, placebo-controlled study in 26 patients with FCHL, treated with pioglitazone or matching placebo 30 mg daily for 4 weeks, followed by 45 mg daily for 12 weeks. Positron emission tomography was used to measure MBF at rest and during adenosine-induced hyperemia and MGU during euglycemic hyperinsulinemic clamp at baseline and after treatment.ResultsWhereas no change was observed in the placebo group after treatment, patients receiving pioglitazone showed a significant increase in whole body glucose disposal (3.93 ± 1.59 mg/kg/min to 5.24 ± 1.65 mg/kg/min; p = 0.004) and MGU (0.62 ± 0.26 μmol/g/min to 0.81 ± 0.14 μmol/g/min; p = 0.0007), accompanied by a significant improvement in resting MBF (1.11 ± 0.20 ml/min/g to 1.25 ± 0.21 ml/min/g; p = 0.008). Furthermore, in the pioglitazone group HDL cholesterol (+28%; p = 0.003) and adiponectin (+156.2%; p = 0.0001) were increased and plasma insulin (−35%; p = 0.017) was reduced.ConclusionsIn patients with FCHL treated with conventional lipid-lowering therapy, the addition of pioglitazone led to significant improvements in MGU and MBF, with a favorable effect on blood lipid and metabolic parameters. (A study to investigate the effect of pioglitazone on whole body and myocardial glucose uptake and myocardial blood flow/coronary vasodilator reserve in patients with familial combined hyperlipidaemia; http://www.controlled-trials.com/mrct/trial/230761/ISRCTN78563659; ISRCTN78563659

    Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention

    No full text
    The purpose of this study was to use cardiac MRI to define the morphology of the reversibly injured peri-infarct border zone in patients treated with primary percutaneous coronary intervention (PPCI) for acute ST elevation myocardial infarction. In 15 patients, T2-weighted myocardial edema imaging was used to identify the ischemic bed or area at risk (AAR), and late gadolinium enhancement imaging was used to measure infarct size. Images were coregistered, and the boundaries of edema and necrosis were defined using an edge-detection methodology. We observed that infarction always involved the subendocardium but showed variable transmural extension within the AAR. The mean infarct size was 22 ± 19% (range: 8–48%), and the mean AAR was 34 ± 12% (range: 20–57%). The infarcted myocardium was always smaller than the ischemic AAR and involved between 34% and 99% (mean 72 ± 21%) of the ischemic bed primarily due to variation in transmural infarct extension. Although a lateral border zone of potentially viable myocardium was often present, its extent was limited (range: 0–11 mm, mean: 5 ± 4 mm). As a result of this, infarcts occupied the majority (range: 70–100%, mean: 82 ± 13%) of the width of the AAR. The mean fractional wall thickening in the infarcted, peri-infarcted, and remote myocardium was 3.6 ± 16.0%, 40.5 ± 26.4%, and 88.2 ± 39.3%, respectively. These findings demonstrate that myocardial salvage is largely determined by epicardial limitation of the infarct within the ischemic AAR after PPCI. The lateral boundaries of necrosis approximate to the lateral extent of the ischemic bed and systolic wall motion abnormalities extend well beyond the infarct border zone
    corecore