634 research outputs found

    Erosion resistance of laser clad Ti-6Al-4V/WC composite for waterjet tooling

    Get PDF
    AbstractIn waterjet operations, milled surfaces are left with some undesirable dimensional artefacts, thus the use of abrasion resistant mask has been proposed to improve the surface quality of machined components. In this study, the erosion performance of laser clad Ti-6Al-4V/WC composite coating subjected to plain water jet (PWJ) and abrasive water jet (AWJ) impacts to evaluate its potentials for use as waterjet impact resistant mask material and coating on components was investigated. Results showed that composite with 76wt.% WC composition subjected to PWJ and AWJ impacts offered resistance to erosion up to 13 and 8 times that of wrought Ti-6Al-4V respectively. Scanning electron microscopy (SEM) examination of the eroded composite surfaces showed that the erosion mechanism under PWJ impacts is based on the formation of erosion pits, tunnels and deep cavities especially in the interface between the WC particles and the composite matrix owing to lateral outflow jetting and hydraulic penetration. Composite suffered ploughing of the composite matrix, lateral cracking and chipping of embedded WC particles and WC pull-out under AWJ impacts. The composite performance is attributed to the embedded WC particles and the uniformly distributed nano-sized reaction products (TiC and W) reinforcing the ductile β-Ti composite matrix, with its mean hardness enhanced to 6.1GPa. The capability of the Ti-6Al-4V/WC composite coating was demonstrated by effective replication of a pattern on a composite mask to an aluminium plate subjected to selective milling by PWJ with an overall depth of 344μm. Thus, composite cladding for tooling purpose would make it possible to enhance the lifetime of jigs and fixtures and promote rapid machining using the water jet technique

    Functionally graded Ni-Ti microstructures synthesised in process by direct laser metal deposition

    Get PDF
    The fabrication of biomedical devices using Ni-Ti compositions is limited to conventional techniques and the use of near equiatomic pre-alloyed Ni and Ti powders. In this study, functionally graded walls and cylinder built by concurrent feeding of Ni powder and commercially pure (CP) Ti wire using direct laser metal deposition technique are presented. The built structures consist of CP Ti wire-deposited layers and Ni-Ti layers of varying Ni composition. The microstructures of the built Ni-Ti structures including phase identification, phase compositions and area fractions of the phases present at various processing parameters were determined using a combination of scanning electron microscopy/ energy dispersive X-ray spectroscopy, X-ray diffractometry and image processing software. Vickers microhardness test was conducted on the deposited structures. It was found that the Ni-Ti layers comprise of NiTi and NiTi2 phases. The area fraction of the NiTi phase increases, whereas NiTi2 decreases with increasing the Ni powder feed rate. Ni-Ti layers with higher area fractions of NiTi2 phase are found to be harder with a maximum of 513 HV0.3 found in this study. The micro-hardness of Ni-Ti layers is, by at least a factor of 1.5, higher than the CP Ti wire laser-deposited layers

    Development of metal matrix composites by direct energy deposition of ‘satellited’ powders

    Get PDF
    Limited research has been undertaken investigating the material design freedoms that are granted through the use of additive manufacturing methods, especially in the development of materials specifically formulated for additive processes. In this study, a new material combination was evaluated for use with directed energy deposition methods of additive manufacturing. Here, a Ti-6Al-4 V powder is processed in combination with a much finer titanium diboride powder following a satelliting procedure. The resulting combination consists of large Ti-6Al-4 V particles encased in finer titanium diboride. Deposited composites presented exhibit TiB needles associated with increased hardness. Processing conditions were detailed which permit the deposition of the prepared feedstock onto Ti-6Al-4 V substrates. Microstructural characterisation revealed that the composite was made up of eutectic TiB precipitates dispersed in α-β Ti matrix with few partially melted Ti-6Al-4 V and TiB2 particles. Satelliting TiB2 powder onto Ti-6Al-4 V particle surfaces has significantly improved the homogeneity of composite which is characterised with randomly oriented and uniform distribution of TiB needles in the microstructure. Hardness of composites ranged between 440–480 HV. Hence, the feedstock preparation method proposed has been found to be effective and can be adapted for low cost and rapid formulation of a host of materials for processing by additive manufacture

    Surface finishing of intricate metal mould structures by large-area electron beam irradiation

    Get PDF
    The advancement of polymer moulding tools is increasingly focused on imparting not only form but also surface texture for functionality to the surfaces of parts that are created. Furthermore, the increasing demand for inexpensive and higher quality micro-components means that tools for replication processes must take advantage of advanced manufacturing techniques. Tools created by processes such as micro-investment casting, as in this case, may often suffer from excessive surface roughness, malformed edges and general deformation. This results in higher de-moulding forces and a reduction in fidelity of moulded parts to design intent. In this study, large-area electron beam irradiation (EB) is shown to be an effective technique for improving these metrics. For the first time, large population, high aspect ratio micro-features are subject to this process and the mechanisms of smoothing and key enhancement phenomena are demonstrated. The possibility of including EB irradiation in an integrated process chain for arriving at net shape is also discussed. Surfaces of protruding features are shown to have surface roughness reduced significantly from 126 to 22 nm Ra value, with bottom substrate also similarly improving from 150 to 27 nm Ra. Bottoms of recessed features are also observed to have much improved surface finishes. ‘Doming’ of tops of column features is also demonstrated, further enhancing form. These features would be far too fragile to be polished by any other mechanical method

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore