15 research outputs found

    The Ground-Dwelling Arthropod Community of Península Valdés in Patagonia, Argentina

    Get PDF
    This is the first study based on a planned and intensive sampling effort that describes the community composition and structure of the ground-dwelling arthropod assemblage of Península Valdés (Patagonia). It was carried out using pitfall traps, opened for two weeks during the summers of 2005, 2006 and 2007. A total of 28, 111 individuals were caught. Ants (Hymenoptera: Formicidae) dominated this community, followed by beetles (Coleoptera) and spiders (Araneae). The most abundant species were Pheidole bergi Mayr (Hymenoptera: Formicidae) and Blapstinus punctulatus Solier (Coleoptera: Tenebrionidae). Two new species were very recently described as new based on specimens collected during this study: Valdesiana curiosa Carpintero, Dellapé & Cheli (Hemiptera, Miridae) and Anomaloptera patagonica Dellapé & Cheli (Hemiptera, Oxycarenidae). The order Coleoptera was the most diverse taxa. The distribution of abundance data was best described by the logarithmic series model both at the family and species levels, suggesting that ecological relationships in this community could be controlled by a few factors. The community was dominated by predators from a trophic perspective. This suggests that predation acts as an important factor driving the distribution and abundances of surface-dwelling arthropods in this habitat and as such serves as a key element in understanding desert, above-ground community structure. These findings may also be useful for management and conservation purposes in arid Patagonia

    The Ground-Dwelling Arthropod Community of Península Valdés in Patagonia, Argentina

    Get PDF
    This is the first study based on a planned and intensive sampling effort that describes the community composition and structure of the ground-dwelling arthropod assemblage of Península Valdés (Patagonia). It was carried out using pitfall traps, opened for two weeks during the summers of 2005, 2006 and 2007. A total of 28, 111 individuals were caught. Ants (Hymenoptera: Formicidae) dominated this community, followed by beetles (Coleoptera) and spiders (Araneae). The most abundant species were Pheidole bergi Mayr (Hymenoptera: Formicidae) and Blapstinus punctulatus Solier (Coleoptera: Tenebrionidae). Two new species were very recently described as new based on specimens collected during this study: Valdesiana curiosa Carpintero, Dellapé & Cheli (Hemiptera, Miridae) and Anomaloptera patagonica Dellapé & Cheli (Hemiptera, Oxycarenidae). The order Coleoptera was the most diverse taxa. The distribution of abundance data was best described by the logarithmic series model both at the family and species levels, suggesting that ecological relationships in this community could be controlled by a few factors. The community was dominated by predators from a trophic perspective. This suggests that predation acts as an important factor driving the distribution and abundances of surface-dwelling arthropods in this habitat and as such serves as a key element in understanding desert, above-ground community structure. These findings may also be useful for management and conservation purposes in arid Patagonia

    Implanted adult human dental pulp stem cells induce endogenous axon guidance

    No full text
    The human central nervous system has limited capacity for regeneration. Stem cell-based therapies may overcome this through cellular mechanisms of neural replacement and/or through molecular mechanisms, whereby secreted factors induce change in the host tissue. To investigate these mechanisms, we used a readily accessible human cell population, dental pulp progenitor/stem cells (DPSCs) that can differentiate into functionally active neurons given the appropriate environmental cues. We hypothesized that implanted DPSCs secrete factors that coordinate axon guidance within a receptive host nervous system. An avian embryonic model system was adapted to investigate axon guidance in vivo after transplantation of adult human DPSCs. Chemoattraction of avian trigeminal ganglion axons toward implanted DPSCs was mediated via the chemokine, CXCL12, also known as stromal cell-derived factor-1, and its receptor, CXCR4. These findings provide the first direct evidence that DPSCs may induce neuroplasticity within a receptive host nervous system.Agnieszka Arthur, Songtao Shi, Andrew C. W. Zannettino, Nobutaka Fujii, Stan Gronthos and Simon A. Kobla
    corecore