4,966 research outputs found

    Critical properties of the unconventional spin-Peierls system TiOBr

    Full text link
    We have performed detailed x-ray scattering measurements on single crystals of the spin-Peierls compound TiOBr in order to study the critical properties of the transition between the incommensurate spin-Peierls state and the paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical exponent beta which is consistent with the conventional 3D universality classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a simple power law fit function we demonstrate that the asymptotic critical regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/- 0.03 in the asymptotic limit. A power law fit function which includes the first order correction-to-scaling confluent singularity term can be used to account for data outside the asymptotic regime, yielding a more robust value of beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In addition, we find that the incommensurate structure between Tc1 and Tc2 is shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review

    Commensurate Fluctuations in the Pseudogap and Incommensurate spin-Peierls Phases of TiOCl

    Full text link
    X-ray scattering measurements on single crystals of TiOCl reveal the presence of commensurate dimerization peaks within both the incommensurate spin-Peierls phase and the so-called pseudogap phase above T_c2. This scattering is relatively narrow in Q-space indicating long correlation lengths exceeding ~ 100 A below T* ~ 130 K. It is also slightly shifted in Q relative to that of the commensurate long range ordered state at the lowest temperatures, and it coexists with the incommensurate Bragg peaks below T_c2. The integrated scattering over both commensurate and incommensurate positions evolves continuously with decreasing temperature for all temperatures below T* ~ 130 K.Comment: To appear in Physical Review B: Rapid Communications. 5 page

    Suppression of the commensurate spin-Peierls state in Sc-doped TiOCl

    Full text link
    We have performed x-ray scattering measurements on single crystals of the doped spin-Peierls compound Ti(1-x)Sc(x)OCl (x = 0, 0.01, 0.03). These measurements reveal that the presence of non-magnetic dopants has a profound effect on the unconventional spin-Peierls behavior of this system, even at concentrations as low as 1%. Sc-doping suppresses commensurate fluctuations in the pseudogap and incommensurate spin-Peierls phases of TiOCl, and prevents the formation of a long-range ordered spin-Peierls state. Broad incommensurate scattering develops in the doped compounds near Tc2 ~ 93 K, and persists down to base temperature (~ 7 K) with no evidence of a lock-in transition. The width of the incommensurate dimerization peaks indicates short correlation lengths on the order of ~ 12 angstroms below Tc2. The intensity of the incommensurate scattering is significantly reduced at higher Sc concentrations, indicating that the size of the associated lattice displacement decreases rapidly as a function of doping.Comment: 7 pages, 5 figure

    Convolutional Radio Modulation Recognition Networks

    Full text link
    We study the adaptation of convolutional neural networks to the complex temporal radio signal domain. We compare the efficacy of radio modulation classification using naively learned features against using expert features which are widely used in the field today and we show significant performance improvements. We show that blind temporal learning on large and densely encoded time series using deep convolutional neural networks is viable and a strong candidate approach for this task especially at low signal to noise ratio

    Issues in microenterprise employment, production and coping strategies in post-devaluation Dakar : the case of garment-making and woodworking firms

    Get PDF
    Thesis (M.C.P.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1996.Includes bibliographical references (p. 85-87).by John C. Powers, Jr.M.C.P

    Singlet-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    Full text link
    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. These measurements represent the first direct measure of the singlet-triplet energy gap in TiOBr, which is determined to be Eg = 21.2 +/- 1.0 meV.Comment: 5 pages, 4 figures, submitted for publicatio
    corecore