51 research outputs found
Robo-AO M-dwarf Multiplicity Survey: Catalog
We analyze observations from Robo-AO's field M dwarf survey taken on the 2.1 m Kitt Peak telescope and perform a multiplicity comparison with Gaia DR2. Through its laser-guided, automated system, the Robo-AO instrument has yielded the largest adaptive optics M dwarf multiplicity survey to date. After developing an interface to visually identify and locate stellar companions, we selected 11 low-significance Robo-AO detections for follow-up on the Keck II telescope using NIRC2. In the Robo-AO survey we find 553 candidate companions within 4'' around 534 stars out of 5566 unique targets, most of which are new discoveries. Using a position cross-match with DR2 on all targets, we assess the binary recoverability of Gaia DR2 and compare the properties of multiples resolved by both Robo-AO and Gaia. The catalog of nearby M dwarf systems and their basic properties presented here can assist other surveys which observe these stars, such as the NASA TESS mission
Robo-AO M-dwarf Multiplicity Survey: Catalog
We analyze observations from Robo-AO's field M dwarf survey taken on the 2.1 m Kitt Peak telescope and perform a multiplicity comparison with Gaia DR2. Through its laser-guided, automated system, the Robo-AO instrument has yielded the largest adaptive optics M dwarf multiplicity survey to date. After developing an interface to visually identify and locate stellar companions, we selected 11 low-significance Robo-AO detections for follow-up on the Keck II telescope using NIRC2. In the Robo-AO survey we find 553 candidate companions within 4'' around 534 stars out of 5566 unique targets, most of which are new discoveries. Using a position cross-match with DR2 on all targets, we assess the binary recoverability of Gaia DR2 and compare the properties of multiples resolved by both Robo-AO and Gaia. The catalog of nearby M dwarf systems and their basic properties presented here can assist other surveys which observe these stars, such as the NASA TESS mission
First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated
observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec
spectrograph. The MINERVA mission is to discover super-Earths in the habitable
zones of nearby stars. This can be accomplished with MINERVA's unique
combination of high precision and high cadence over long time periods. In this
work, we detail changes to the MINERVA facility that have occurred since our
previous paper. We then describe MINERVA's robotic control software, the
process by which we perform 1D spectral extraction, and our forward modeling
Doppler pipeline. In the process of improving our forward modeling procedure,
we found that our spectrograph's intrinsic instrumental profile is stable for
at least nine months. Because of that, we characterized our instrumental
profile with a time-independent, cubic spline function based on the profile in
the cross dispersion direction, with which we achieved a radial velocity
precision similar to using a conventional "sum-of-Gaussians" instrumental
profile: 1.8 m s over 1.5 months on the RV standard star HD 122064.
Therefore, we conclude that the instrumental profile need not be perfectly
accurate as long as it is stable. In addition, we observed 51 Peg and our
results are consistent with the literature, confirming our spectrograph and
Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte
Salve Regina University Act on Climate: Strategic Plan for the University to Reach State Carbon Neutrality Goals
In order to become more sustainable and meet the mandate set by the 2021 Rhode Island Act on Climate law (RI General Law §42-6.2), Salve Regina University must work to reach net-zero greenhouse gas emissions by the year 2050. Action to meet these standards begins now and must be continually built upon to ensure that Salve Regina University, as leader in Rhode Island, is always working for a more sustainable future. Throughout the Spring 2022 semester, students of the BIO-140: Humans and Their Environment course instructed by Dr. Jameson Chace have researched ways in which Salve Regina can begin on the path to zero greenhouse gas emissions today. By focusing on change in the areas of energy, transportation, food, financial investments, and sequestration, Salve Regina can reduce the greenhouse gas emissions of today for a more sustainable tomorrow. Recommendations are broken into three time periods. Action for today to achieve by 2030 include improving energy efficiency, installing the first electric vehicle (EV) parking/charging stations, increasing carbon sequestration, reducing beef in the campus diet, and assessing the carbon impact of university financial holdings. Actions to be initiated soon and to be achieved by 2040 include shifting away from natural gas heating when system renewals take place, increasing EV parking to meet rising demand, during turnover replace current university vehicles with electric or hybrid, continuing with sequestration efforts on campus, begin phasing out high carbon diet items, and by 2040 the university investment portfolio should be carbon neutral. If carbon neutrality can be reached by 2050 the most challenging aspects of campus life that need to change will require planning now and thoughtful implementation. The class in 2022 envisions a campus in 2050 where solar lights illuminate campus and buildings through the night, all university vehicles and most faculty and staff vehicles are electric and are found charging during the day at solar powered charging stations, dining services in Miley supports community agriculture and includes incentives for meatless and low carbon meal plans, the university has become a leader in low carbon/green market investing demonstrating how careful planning can reap high returns, and carbon sequestration on campus grounds has maximized such that off campus carbon offsets are established with local land trusts to complete the carbon neutrality goals. In doing so no only will the university be recognized as a state-wide leader in climate action, but will also be a global leader in working towards a world that is more harmonious, just, and merciful.https://digitalcommons.salve.edu/bio140_arboretum/1033/thumbnail.jp
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Modeling Collective Cell Behavior in Cancer: Perspectives From an Interdisciplinary Conversation
Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions
Identifying educator behaviours for high quality verbal feedback in health professions education: literature review and expert refinement
Background
Health professions education is characterised by work-based learning and relies on effective verbal feedback. However the literature reports problems in feedback practice, including lack of both learner engagement and explicit strategies for improving performance. It is not clear what constitutes high quality, learner-centred feedback or how educators can promote it. We hoped to enhance feedback in clinical practice by distinguishing the elements of an educator’s role in feedback considered to influence learner outcomes, then develop descriptions of observable educator behaviours that exemplify them.
Methods
An extensive literature review was conducted to identify i) information substantiating specific components of an educator’s role in feedback asserted to have an important influence on learner outcomes and ii) verbal feedback instruments in health professions education, that may describe important educator activities in effective feedback. This information was used to construct a list of elements thought to be important in effective feedback. Based on these elements, descriptions of observable educator behaviours that represent effective feedback were developed and refined during three rounds of a Delphi process and a face-to-face meeting with experts across the health professions and education.
Results
The review identified more than 170 relevant articles (involving health professions, education, psychology and business literature) and ten verbal feedback instruments in health professions education (plus modified versions). Eighteen distinct elements of an educator’s role in effective feedback were delineated. Twenty five descriptions of educator behaviours that align with the elements were ratified by the expert panel.
Conclusions
This research clarifies the distinct elements of an educator’s role in feedback considered to enhance learner outcomes. The corresponding set of observable educator behaviours aim to describe how an educator could engage, motivate and enable a learner to improve. This creates the foundation for developing a method to systematically evaluate the impact of verbal feedback on learner performance
- …