10,174 research outputs found

    Transport of patterns by Burge transpose

    Full text link
    We take the first steps in developing a theory of transport of patterns from Fishburn permutations to (modified) ascent sequences. Given a set of pattern avoiding Fishburn permutations, we provide an explicit construction for the basis of the corresponding set of modified ascent sequences. Our approach is in fact more general and can transport patterns between permutations and equivalence classes of so called Cayley permutations. This transport of patterns relies on a simple operation we call the Burge transpose. It operates on certain biwords called Burge words. Moreover, using mesh patterns on Cayley permutations, we present an alternative view of the transport of patterns as a Wilf-equivalence between subsets of Cayley permutations. We also highlight a connection with primitive ascent sequences.Comment: 24 pages, 4 figure

    Classification of bijections between 321- and 132-avoiding permutations

    Get PDF
    It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs of this fact. It turns out that some of the published bijections can easily be obtained from others. In this paper we describe all bijections we were able to find in the literature and show how they are related to each other via ``trivial'' bijections. We classify the bijections according to statistics preserved (from a fixed, but large, set of statistics), obtaining substantial extensions of known results. Thus, we give a comprehensive survey and a systematic analysis of these bijections. We also give a recursive description of the algorithmic bijection given by Richards in 1988 (combined with a bijection by Knuth from 1969). This bijection is equivalent to the celebrated bijection of Simion and Schmidt (1985), as well as to the bijection given by Krattenthaler in 2001, and it respects 11 statistics--the largest number of statistics any of the bijections respects

    Permutations sortable by n-4 passes through a stack

    Get PDF
    We characterise and enumerate permutations that are sortable by n-4 passes through a stack. We conjecture the number of permutations sortable by n-5 passes, and also the form of a formula for the general case n-k, which involves a polynomial expression.Comment: 6 page

    Isomorphisms between pattern classes

    Get PDF
    Isomorphisms p between pattern classes A and B are considered. It is shown that, if p is not a symmetry of the entire set of permutations, then, to within symmetry, A is a subset of one a small set of pattern classes whose structure, including their enumeration, is determined.Comment: 11 page

    Boolean complexes for Ferrers graphs

    Full text link
    In this paper we provide an explicit formula for calculating the boolean number of a Ferrers graph. By previous work of the last two authors, this determines the homotopy type of the boolean complex of the graph. Specializing to staircase shapes, we show that the boolean numbers of the associated Ferrers graphs are the Genocchi numbers of the second kind, and obtain a relation between the Legendre-Stirling numbers and the Genocchi numbers of the second kind. In another application, we compute the boolean number of a complete bipartite graph, corresponding to a rectangular Ferrers shape, which is expressed in terms of the Stirling numbers of the second kind. Finally, we analyze the complexity of calculating the boolean number of a Ferrers graph using these results and show that it is a significant improvement over calculating by edge recursion.Comment: final version, to appear in the The Australasian Journal of Combinatoric
    corecore