4,640 research outputs found
Treewidth, crushing, and hyperbolic volume
We prove that there exists a universal constant such that any closed
hyperbolic 3-manifold admits a triangulation of treewidth at most times its
volume. The converse is not true: we show there exists a sequence of hyperbolic
3-manifolds of bounded treewidth but volume approaching infinity. Along the
way, we prove that crushing a normal surface in a triangulation does not
increase the carving-width, and hence crushing any number of normal surfaces in
a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former
argument (in V1) used a construction that relied on a wrong theorem. Section
5.1 has also been adjusted to the new construction. Various other arguments
have been clarifie
Topologically massive gravito-electrodynamics: exact solutions
We construct two classes of exact solutions to the field equations of
topologically massive electrodynamics coupled to topologically massive gravity
in 2 + 1 dimensions. The self-dual stationary solutions of the first class are
horizonless, asymptotic to the extreme BTZ black-hole metric, and regular for a
suitable parameter domain. The diagonal solutions of the second class, which
exist if the two Chern-Simons coupling constants exactly balance, include
anisotropic cosmologies and static solutions with a pointlike horizon.Comment: 15 pages, LaTeX, no figure
Multi-Black-Holes in Three Dimensions
We construct time-dependent multi-centre solutions to three-dimensional
general relativity with zero or negative cosmological constant. These solutions
correspond to dynamical systems of freely falling black holes and conical
singularities, with a multiply connected spacetime topology. Stationary
multi-black-hole solutions are possible only in the extreme black hole case.Comment: 8 pages, \LaTex, 4 figures (available on request), GCR 94/02/0
Gravitating Chern-Simons vortices
The construction of self-dual vortex solutions to the Chern-Simons-Higgs
model (with a suitable eighth-order potential) coupled to Einstein gravity in
(2 + 1) dimensions is reconsidered. We show that the self-duality condition may
be derived from the sole assumption . Next, we derive a family of
exact, doubly self-dual vortex solutions, which interpolate between the
symmetrical and asymmetrical vacua. The corresponding spacetimes have two
regions at spatial infinity. The eighth-order Higgs potential is positive
definite, and closed timelike curves are absent, if the gravitational constant
is chosen to be negative.Comment: 11 pages, LaTe
Wormhole cosmic strings
We construct regular multi-wormhole solutions to a gravitating model
in three space-time dimensions, and extend these solutions to cylindrical
traversable wormholes in four and five dimensions. We then discuss the
possibility of identifying wormhole mouths in pairs to give rise to Wheeler
wormholes. Such an identification is consistent with the original field
equations only in the absence of the -model source, but with possible
naked cosmic string sources. The resulting Wheeler wormhole space-times are
flat outside the sources and may be asymptotically Minkowskian.Comment: 17 pages, LaTeX, 4 figures (hard copy available on request
The black holes of topologically massive gravity
We show that an analytical continuation of the Vuorio solution to
three-dimensional topologically massive gravity leads to a two-parameter family
of black hole solutions, which are geodesically complete and causally regular
within a certain parameter range. No observers can remain static in these
spacetimes. We discuss their global structure, and evaluate their mass, angular
momentum, and entropy, which satisfy a slightly modified form of the first law
of thermodynamics.Comment: 10 pages; Eq. (15) corrected, references added, version to appear in
Classical and Quantum Gravit
Generally Covariant Conservative Energy-Momentum for Gravitational Anyons
We obtain a generally covariant conservation law of energy-momentum for
gravitational anyons by the general displacement transform. The energy-momentum
currents have also superpotentials and are therefore identically conserved. It
is shown that for Deser's solution and Clement's solution, the energy vanishes.
The reasonableness of the definition of energy-momentum may be confirmed by the
solution for pure Einstein gravity which is a limit of vanishing Chern-Simons
coulping of gravitational anyons.Comment: 12 pages, Latex, no figure
Black hole mass and angular momentum in 2+1 gravity
We propose a new definition for the mass and angular momentum of neutral or
electrically charged black holes in 2+1 gravity with two Killing vectors. These
finite conserved quantities, associated with the SL(2,R) invariance of the
reduced mechanical system, are shown to be identical to the quasilocal
conserved quantities for an improved gravitational action corresponding to
mixed boundary conditions. They obey a general Smarr-like formula and, in all
cases investigated, are consistent with the first law of black hole
thermodynamics. Our framework is applied to the computation of the mass and
angular momentum of black hole solutions to several field-theoretical models.Comment: 23 pages, 3 references added, to be published in Physical Review
Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass
High-resolution Brillouin scattering is used to achieve 3-dimensional maps of
the longitudinal acoustic mode frequency shift in soda-lime silicate glasses
subject to Vickers indentations. Assuming that residual stress-induced effects
are simply proportional to density changes, residual densification fields are
obtained. The density gradient is nearly isotropic, confirming earlier optical
observations made on a similar glass. The results show that Brillouin
micro-spectroscopy opens the way to a fully quantitative comparison of
experimental data with predictions of mechanical models for the identification
of a constitutive law.Comment: 4 pages, 3 figures, revised version, to appear in Appl. Phys. Let
- âŠ