1,004 research outputs found
Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers
Scene parsing, or semantic segmentation, consists in labeling each pixel in
an image with the category of the object it belongs to. It is a challenging
task that involves the simultaneous detection, segmentation and recognition of
all the objects in the image.
The scene parsing method proposed here starts by computing a tree of segments
from a graph of pixel dissimilarities. Simultaneously, a set of dense feature
vectors is computed which encodes regions of multiple sizes centered on each
pixel. The feature extractor is a multiscale convolutional network trained from
raw pixels. The feature vectors associated with the segments covered by each
node in the tree are aggregated and fed to a classifier which produces an
estimate of the distribution of object categories contained in the segment. A
subset of tree nodes that cover the image are then selected so as to maximize
the average "purity" of the class distributions, hence maximizing the overall
likelihood that each segment will contain a single object. The convolutional
network feature extractor is trained end-to-end from raw pixels, alleviating
the need for engineered features. After training, the system is parameter free.
The system yields record accuracies on the Stanford Background Dataset (8
classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170
classes) while being an order of magnitude faster than competing approaches,
producing a 320 \times 240 image labeling in less than 1 second.Comment: 9 pages, 4 figures - Published in 29th International Conference on
Machine Learning (ICML 2012), Jun 2012, Edinburgh, United Kingdo
Estimation of species relative abundances and habitat preferences using opportunistic data
We develop a new statistical procedure to monitor, with opportunist data,
relative species abundances and their respective preferences for dierent
habitat types. Following Giraud et al. (2015), we combine the opportunistic
data with some standardized data in order to correct the bias inherent to the
opportunistic data collection. Our main contributions are (i) to tackle the
bias induced by habitat selection behaviors, (ii) to handle data where the
habitat type associated to each observation is unknown, (iii) to estimate
probabilities of selection of habitat for the species. As an illustration, we
estimate common bird species habitat preferences and abundances in the region
of Aquitaine (France)
Indoor Semantic Segmentation using depth information
This work addresses multi-class segmentation of indoor scenes with RGB-D
inputs. While this area of research has gained much attention recently, most
works still rely on hand-crafted features. In contrast, we apply a multiscale
convolutional network to learn features directly from the images and the depth
information. We obtain state-of-the-art on the NYU-v2 depth dataset with an
accuracy of 64.5%. We illustrate the labeling of indoor scenes in videos
sequences that could be processed in real-time using appropriate hardware such
as an FPGA.Comment: 8 pages, 3 figure
Aimi Antonio, Krzysztof Makowski et Emilia Perassi, Lambayeque. Nuevos horizontes de la arqueologĂa peruana
Lâouvrage Lambayeque. Nuevos horizontes de la arqueologĂa peruana, Ă©ditĂ© par A. Aimi, K. Makowski et E. Perassi, grĂące au Proyecto ProPomac de lâUniversitĂ degli Studi di Milano et au Fond italo-pĂ©ruvien, est une monographie dĂ©taillĂ©e des derniĂšres recherches historiographiques, iconographiques, ethnohistoriques et archĂ©ologiques consacrĂ©es Ă la culture lambayeque, qui fleurit sur la cĂŽte nord du PĂ©rou Ă partir du ixe siĂšcle apr. J.-C. Ce livre,..
Convolutional Nets and Watershed Cuts for Real-Time Semantic Labeling of RGBD Videos
International audienceThis work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on handcrafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. Using a frame by frame labeling, we obtain nearly state-of-the-art performance on the NYU-v2 depth dataset with an accuracy of 64.5%. We then show that the labeling can be further improved by exploiting the temporal consistency in the video sequence of the scene. To that goal, we present a method producing temporally consistent superpixels from a streaming video. Among the di erent methods producing superpixel segmentations of an image, the graph-based approach of Felzenszwalb and Huttenlocher is broadly employed. One of its interesting properties is that the regions are computed in a greedy manner in quasi-linear time by using a minimum spanning tree. In a framework exploiting minimum spanning trees all along, we propose an efficient video segmentation approach that computes temporally consistent pixels in a causal manner, filling the need for causal and real-time applications. We illustrate the labeling of indoor scenes in video sequences that could be processed in real-time using appropriate hardware such as an FPGA
Capitalising on Opportunistic Data for Monitoring Species Relative Abundances
With the internet, a massive amount of information on species abundance can be collected under citizen science programs. However, these data are often difficult to use directly in statistical inference, as their collection is generally opportunistic, and the distribution of the sampling effort is often not known. In this paper, we develop a general statistical framework to combine such ``opportunistic data'' with data collected using schemes characterized by a known sampling effort. Under some structural assumptions regarding the sampling effort and detectability, our approach allows to estimate the relative abundance of several species in different sites. It can be implemented through a simple generalized linear model. We illustrate the framework with typical bird datasets from the Aquitaine region, south-western France. We show that, under some assumptions, our approach provides estimates that are more precise than the ones obtained from the dataset with a known sampling effort alone. When the opportunistic data are abundant, the gain in precision may be considerable, especially for the rare species. We also show that estimates can be obtained even for species recorded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount of data collected with a known effort may thus provide access to accurate and precise estimates of quantitative changes in relative abundance over space and/or time
PrĂ©server les espaces agricoles pĂ©riurbains face Ă lâĂ©talement urbain. Une problĂ©matique localeâ?
Le devenir des espaces agricoles face Ă lâĂ©talement urbain est Ă©tudiĂ© en croisant trois points de vue. PremiĂšrement, nous caractĂ©risons lâĂ©talement urbain consommateur dâespaces agricoles dans deux rĂ©gions sud europĂ©ennes : le Languedoc-Roussillon en France et le Nord-Ouest du Portugal. DeuxiĂšmement, nous recensons les documents, rĂšglements et outils de politiques publiques mis Ă la disposition des acteurs des deux rĂ©gions dâĂ©tude pour rĂ©agir Ă cet Ă©talement urbain en Ćuvrant pour le dĂ©veloppement durable. TroisiĂšmement, nous faisons un zoom sur la mise en Ćuvre de deux projets locaux contrastĂ©s, lâun rĂšglementaire, un SchĂ©ma de CohĂ©rence Territoriale (SCoT), en France, et lâautre dâorientation, un Agenda 21 local, au Portugal. Nos rĂ©sultats montrent que lâĂ©talement urbain se poursuit mĂȘme sâil ralentit selon les derniers chiffres. Et les nouveaux outils et documents gĂ©nĂ©rĂ©s par les politiques publiques pour lâendiguer et pour protĂ©ger les espaces agricoles, restent peu mobilisĂ©s localement. Nous en concluons que la gestion de lâĂ©talement urbain se joue dans les multiples articulations entre le local et les processus englobants.The future of agricultural areas in regards to urban sprawl is studied in three steps. Firstly, we analyse the encroachment of urban sprawl onto agricultural land in two regions of Southern Europe through GIS tools : Languedoc-Roussillon in France and the North-West of Portugal. Secondly, we survey documents, laws and tools of public policy available to local planning actors to react to urban sprawl and/or maintain peri-urban agricultural land, thus contributing to sustainable development. Finally, we focus on two different local projects, one normative, a Territorial Coherence Plan (SCoT) (in France) and the other non-normative, Local Agenda 21 (in Portugal). As a result, we show that urban sprawl continues even if recent data reports a decrease. The new tools and documents generated by public policy to confine urban sprawl and protect agricultural land continue to be rarely used locally. We conclude that urban sprawl can be managed in multiple articulations between the local and global scales
Wage Incidence of a Large Corporate Tax Credit: Contrasting Employee - and Firm - Level Evidence
The present paper sheds new light on the incidence of ïŹrm taxation by exploiting the design of a large-scale corporate income tax credit in France. The tax credit is proportional to the wage bill of workers paid below a hourly wage threshold, which induces a discontinuity in mandatory levies at the employee level. We use discontinuities at the employee level in order to estimate ïŹrm-level incidence. This turns out to be the relevant level for the effects of the policy, which would be undetectable with an estimation focused on the employee level impact of the shock. Relying on exhaustive matched employer-employee data, we ïŹnd a discrepancy between the absence of incidence at the employee level and a substantial incidence on wages at the ïŹrm level, around 50%. We ïŹnd more over that the policy in question has stark (anti)-redistributive effects. The tax cut is targeting the lowest part of wage earners, but the beneïŹts accrue to other employees inside the ïŹrm, who earn substantially higher wages on average
Ăvaluation interdisciplinaire des impacts du CICE en matiĂšre dâemplois et de salaires:Rapport du Laboratoire Interdisciplinaire dâĂvaluation des Politiques Publiques (LIEPP) de Sciences Po en rĂ©ponse Ă lâappel Ă Ă©valuation de France StratĂ©gie
Le crĂ©dit dâimpĂŽt pour la compĂ©titivitĂ© et lâemploi (CICE) a Ă©tĂ© instituĂ© avec lâobjectif dâamĂ©liorer la compĂ©titivitĂ© des entreprises. Pour Ă©tudier ses diffĂ©rents effets potentiels sur lâemploi et les salaires, lâĂ©valuation prĂ©sentĂ©e ici sâappuie dâune part sur une analyse Ă©conomique, et dâautre part sur une Ă©tude sociologique, dont les rĂ©sultats qualitatifs avaient Ă©tĂ© dĂ©taillĂ©s lors du rapport remis le 29 septembre 2016 par le LIEPP de Sciences Po Ă France StratĂ©gie. Lâanalyse micro-Ă©conomique basĂ©e sur les donnĂ©es fiscales et sociales des entreprises fait tout dâabord apparaĂźtre que, au niveau de lâemploi, les dĂ©cisions des nouvelles embauches des entreprises nâont pas Ă©tĂ© affectĂ©es par la prĂ©sence de la nette discontinuitĂ© du CICE. De plus, comparativement aux entreprises moins intensĂ©ment ciblĂ©es par la mesure, les entreprises les plus intensĂ©ment ciblĂ©es par le CICE nâont pas connu de hausse de lâemploi entre 2013 et 2015, et cela quelle que soit la catĂ©gorie socio-professionnelle. Concernant lâeffet sur les salaires, notre analyse montre que la mesure nâa pas eu dâimpact dĂ©tectable sur la distribution des hausses de salaires mais il apparaĂźt toutefois quâau niveau de lâentreprise, les sommes allouĂ©es dans le cadre du CICE ont Ă©tĂ© en partie reversĂ©es aux salariĂ©s, sous forme de hausses de salaires, en particulier aux cadres, professions intellectuelles supĂ©rieures et professions intermĂ©diaires. Il faut garder Ă lâesprit que les conclusions de cette Ă©valuation ne portent que sur les trois premiĂšres annĂ©es de mise en place du CICE, les donnĂ©es de 2016 et 2017 nâĂ©tant pas encore disponibles au moment de lâĂ©valuation. Il convient enfin de prĂ©ciser la difficultĂ© de toute Ă©tude portant sur le CICE : celui-ci nâa pas Ă©tĂ© conçu de maniĂšre Ă ĂȘtre Ă©valuĂ© par un dispositif expĂ©rimental
- âŠ