22 research outputs found

    Mass Volume Curves and Anomaly Ranking

    Full text link
    This paper aims at formulating the issue of ranking multivariate unlabeled observations depending on their degree of abnormality as an unsupervised statistical learning task. In the 1-d situation, this problem is usually tackled by means of tail estimation techniques: univariate observations are viewed as all the more `abnormal' as they are located far in the tail(s) of the underlying probability distribution. It would be desirable as well to dispose of a scalar valued `scoring' function allowing for comparing the degree of abnormality of multivariate observations. Here we formulate the issue of scoring anomalies as a M-estimation problem by means of a novel functional performance criterion, referred to as the Mass Volume curve (MV curve in short), whose optimal elements are strictly increasing transforms of the density almost everywhere on the support of the density. We first study the statistical estimation of the MV curve of a given scoring function and we provide a strategy to build confidence regions using a smoothed bootstrap approach. Optimization of this functional criterion over the set of piecewise constant scoring functions is next tackled. This boils down to estimating a sequence of empirical minimum volume sets whose levels are chosen adaptively from the data, so as to adjust to the variations of the optimal MV curve, while controling the bias of its approximation by a stepwise curve. Generalization bounds are then established for the difference in sup norm between the MV curve of the empirical scoring function thus obtained and the optimal MV curve

    Ranking Median Regression: Learning to Order through Local Consensus

    Full text link
    This article is devoted to the problem of predicting the value taken by a random permutation ÎŁ\Sigma, describing the preferences of an individual over a set of numbered items {1,  
,  n}\{1,\; \ldots,\; n\} say, based on the observation of an input/explanatory r.v. XX e.g. characteristics of the individual), when error is measured by the Kendall τ\tau distance. In the probabilistic formulation of the 'Learning to Order' problem we propose, which extends the framework for statistical Kemeny ranking aggregation developped in \citet{CKS17}, this boils down to recovering conditional Kemeny medians of ÎŁ\Sigma given XX from i.i.d. training examples (X1,ÎŁ1),  
,  (XN,ÎŁN)(X_1, \Sigma_1),\; \ldots,\; (X_N, \Sigma_N). For this reason, this statistical learning problem is referred to as \textit{ranking median regression} here. Our contribution is twofold. We first propose a probabilistic theory of ranking median regression: the set of optimal elements is characterized, the performance of empirical risk minimizers is investigated in this context and situations where fast learning rates can be achieved are also exhibited. Next we introduce the concept of local consensus/median, in order to derive efficient methods for ranking median regression. The major advantage of this local learning approach lies in its close connection with the widely studied Kemeny aggregation problem. From an algorithmic perspective, this permits to build predictive rules for ranking median regression by implementing efficient techniques for (approximate) Kemeny median computations at a local level in a tractable manner. In particular, versions of kk-nearest neighbor and tree-based methods, tailored to ranking median regression, are investigated. Accuracy of piecewise constant ranking median regression rules is studied under a specific smoothness assumption for ÎŁ\Sigma's conditional distribution given XX

    Regular Variation in Hilbert Spaces and Principal Component Analysis for Functional Extremes

    Full text link
    Motivated by the increasing availability of data of functional nature, we develop a general probabilistic and statistical framework for extremes of regularly varying random elements XX in L2[0,1]L^2[0,1]. We place ourselves in a Peaks-Over-Threshold framework where a functional extreme is defined as an observation XX whose L2L^2-norm ∄X∄\|X\| is comparatively large. Our goal is to propose a dimension reduction framework resulting into finite dimensional projections for such extreme observations. Our contribution is double. First, we investigate the notion of Regular Variation for random quantities valued in a general separable Hilbert space, for which we propose a novel concrete characterization involving solely stochastic convergence of real-valued random variables. Second, we propose a notion of functional Principal Component Analysis (PCA) accounting for the principal `directions' of functional extremes. We investigate the statistical properties of the empirical covariance operator of the angular component of extreme functions, by upper-bounding the Hilbert-Schmidt norm of the estimation error for finite sample sizes. Numerical experiments with simulated and real data illustrate this work.Comment: 29 pages (main paper), 5 pages (appendix

    On Medians of (Randomized) Pairwise Means

    Full text link
    Tournament procedures, recently introduced in Lugosi & Mendelson (2016), offer an appealing alternative, from a theoretical perspective at least, to the principle of Empirical Risk Minimization in machine learning. Statistical learning by Median-of-Means (MoM) basically consists in segmenting the training data into blocks of equal size and comparing the statistical performance of every pair of candidate decision rules on each data block: that with highest performance on the majority of the blocks is declared as the winner. In the context of nonparametric regression, functions having won all their duels have been shown to outperform empirical risk minimizers w.r.t. the mean squared error under minimal assumptions, while exhibiting robustness properties. It is the purpose of this paper to extend this approach in order to address other learning problems, in particular for which the performance criterion takes the form of an expectation over pairs of observations rather than over one single observation, as may be the case in pairwise ranking, clustering or metric learning. Precisely, it is proved here that the bounds achieved by MoM are essentially conserved when the blocks are built by means of independent sampling without replacement schemes instead of a simple segmentation. These results are next extended to situations where the risk is related to a pairwise loss function and its empirical counterpart is of the form of a UU-statistic. Beyond theoretical results guaranteeing the performance of the learning/estimation methods proposed, some numerical experiments provide empirical evidence of their relevance in practice

    Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints

    Get PDF
    Many applications of AI involve scoring individuals using a learned function of their attributes. These predictive risk scores are then used to take decisions based on whether the score exceeds a certain threshold, which may vary depending on the context. The level of delegation granted to such systems in critical applications like credit lending and medical diagnosis will heavily depend on how questions of fairness can be answered. In this paper, we study fairness for the problem of learning scoring functions from binary labeled data, a classic learning task known as bipartite ranking. We argue that the functional nature of the ROC curve, the gold standard measure of ranking accuracy in this context, leads to several ways of formulating fairness constraints. We introduce general families of fairness definitions based on the AUC and on ROC curves, and show that our ROC-based constraints can be instantiated such that classifiers obtained by thresholding the scoring function satisfy classification fairness for a desired range of thresholds. We establish generalization bounds for scoring functions learned under such constraints, design practical learning algorithms and show the relevance our approach with numerical experiments on real and synthetic data.Comment: 35 pages, 13 figures, 6 table
    corecore