4 research outputs found

    Frequency-Domain Detection for Molecular Communication with Cross-Reactive Receptors

    Full text link
    Molecular Communications (MC) is a bio-inspired communication paradigm that uses molecules as information carriers, requiring unconventional transceivers and modulation/detection techniques. Practical MC receivers (MC-Rxs) can be implemented using field-effect transistor biosensor (bioFET) architectures, where surface receptors reversibly react with ligands. The time-varying concentration of ligand-bound receptors is translated into electrical signals via field effect, which is used to decode the transmitted information. However, ligand-receptor interactions do not provide an ideal molecular selectivity, as similar ligand types, i.e., interferers, co-existing in the MC channel, can interact with the same type of receptors. Overcoming this molecular cross-talk in the time domain can be challenging, especially when Rx has no knowledge of the interferer statistics or operates near saturation. Therefore, we propose a frequency-domain detection (FDD) technique for bioFET-based MC-Rxs that exploits the difference in binding reaction rates of different ligand types reflected in the power spectrum of the ligand-receptor binding noise. We derive the bit error probability (BEP) of the FDD technique and demonstrate its effectiveness in decoding transmitted concentration signals under stochastic molecular interference compared to a widely used time-domain detection (TDD) technique. We then verified the analytical performance bounds of the FDD through a particle-based spatial stochastic simulator simulating reactions on the MC-Rx in microfluidic channels.Comment: Submitted to the IEEE for possible publication. arXiv admin note: text overlap with arXiv:2301.0104

    Graphene and Related Materials for the Internet of Bio-Nano Things

    Full text link
    Internet of Bio-Nano Things (IoBNT) is a transformative communication framework, characterized by heterogeneous networks comprising both biological entities and artificial micro/nano-scale devices, so-called Bio-Nano Things (BNTs), interfaced with conventional communication networks for enabling innovative biomedical and environmental applications. Realizing the potential of IoBNT requires the development of new and unconventional communication technologies, such as molecular communications, as well as the corresponding transceivers, bio-cyber interfacing technologies connecting the biochemical domain of IoBNT to the electromagnetic domain of conventional networks, and miniaturized energy harvesting and storage components for the continuous power supply to BNTs. Graphene and related materials (GRMs) exhibit exceptional electrical, optical, biochemical, and mechanical properties, rendering them ideal candidates for addressing the challenges posed by IoBNT. This perspective article highlights recent advancements in GRM-based device technologies that are promising for implementing the core components of IoBNT. By identifying the unique opportunities afforded by GRMs and aligning them with the practical challenges associated with IoBNT, particularly in the materials domain, our aim is to accelerate the transition of envisaged IoBNT applications from theoretical concepts to practical implementations, while also uncovering new application areas for GRMs

    Universal Transceivers: Opportunities and Future Directions for the Internet of Everything (IoE)

    Get PDF
    The Internet of Everything (IoE) is a recently introduced information and communication technology (ICT) framework promising for extending the human connectivity to the entire universe, which itself can be regarded as a natural IoE, an interconnected network of everything we perceive. The countless number of opportunities that can be enabled by IoE through a blend of heterogeneous ICT technologies across different scales and environments and a seamless interface with the natural IoE impose several fundamental challenges, such as interoperability, ubiquitous connectivity, energy efficiency, and miniaturization. The key to address these challenges is to advance our communication technology to match the multi-scale, multi-modal, and dynamic features of the natural IoE. To this end, we introduce a new communication device concept, namely the universal IoE transceiver, that encompasses transceiver architectures that are characterized by multi-modality in communication (with modalities such as molecular, RF/THz, optical and acoustic) and in energy harvesting (with modalities such as mechanical, solar, biochemical), modularity, tunability, and scalability. Focusing on these fundamental traits, we provide an overview of the opportunities that can be opened up by micro/nanoscale universal transceiver architectures towards realizing the IoE applications. We also discuss the most pressing challenges in implementing such transceivers and briefly review the open research directions. Our discussion is particularly focused on the opportunities and challenges pertaining to the IoE physical layer, which can enable the efficient and effective design of higher-level techniques. We believe that such universal transceivers can pave the way for seamless connection and communication with the universe at a deeper level and pioneer the construction of the forthcoming IoE landscape
    corecore