1,733 research outputs found
Resting EEG asymmetry markers of multiple facets of the behavioral approach system: a LORETA analysis
Previously published models of frontal activity linked high relative left frontal activity to the behavioral approach system (BAS) and impulsivity. Additionally, these models did not account for BAS facets encompassing the anticipation of reward, i.e., goal-driven persistence (BAS–GDP) and reward interest (BAS–RI), from those that deal with the actual hedonic experience of reward, i.e., reward reactivity (BAS–RR) and impulsivity (BAS–I). Using resting electroencephalographic (EEG) recordings, the source localization (LORETA) method allowed us to calculate the hemispheric asymmetry of the current density within the alpha band (7.5–13 Hz) in ten regions of interest. Compared to low BAS subtrait scorers, high BAS subtrait scorers (except for BAS–I) were correlated with greater relative left-sided activity in the superior frontal gyrus (BA10). Further, an isolated effective coherence (iCOH) analysis of the beta activity (21 Hz) disclosed that high impulsive scorers as compared to low impulsive ones had higher connectivity between the superior frontal gyrus and middle temporal gyrus, which was not compensated for by enhanced inhibitory alpha (11 Hz) connectivity between these regions. For the beta frequency, we also found in highly impulsive individuals that (i) both left and right middle temporal lobes directly influenced the activity of the left and right superior frontal lobes, and (ii) a clear decoupling between left and right superior frontal lobes. These findings could indicate reduced control by the supervisory system in more impulsive individuals
Hybrid Superconducting Neutron Detectors
A new neutron detection concept is presented that is based on superconductive
niobium (Nb) strips coated by a boron (B) layer. The working principle of the
detector relies on the nuclear reaction 10B+n + 7Li ,
with and Li ions generating a hot spot on the current-biased Nb strip
which in turn induces a superconducting-normal state transition. The latter is
recognized as a voltage signal which is the evidence of the incident neutron.
The above described detection principle has been experimentally assessed and
verified by irradiating the samples with a pulsed neutron beam at the ISIS
spallation neutron source (UK). It is found that the boron coated
superconducting strips, kept at a temperature T = 8 K and current-biased below
the critical current Ic, are driven into the normal state upon thermal neutron
irradiation. As a result of the transition, voltage pulses in excess of 40 mV
are measured while the bias current can be properly modulated to bring the
strip back to the superconducting state, thus resetting the detector.
Measurements on the counting rate of the device are presented and the future
perspectives leading to neutron detectors with unprecedented spatial
resolutions and efficiency are highlighted.Comment: 8 pages 6 figure
Form and width of spectral line of Josephson Flux-Flow oscillator
The behavior of a Josephson flux-flow oscillator in the presence of both bias
current and magnetic field fluctuations has been studied. To derive the
equation for slow phase dynamics in the limit of small noise intensity the
Poincare method has been used. Both the form of spectral line and the linewidth
of the flux-flow oscillator have been derived exactly on the basis of technique
presented in the book of Malakhov, known limiting cases are considered, limits
of their applicability are discussed and appearance of excess noise is
explained. Good coincidence of theoretical description with experimental
results has been demonstrated.Comment: 10 pages, 5 figure
Microwave-induced flow of vortices in long Josephson junctions
We report experimental and numerical study of microwave-induced flow of
vortices in long Josephson junctions at zero dc magnetic field. Our intriguing
observation is that applying an ac-bias of a small frequency and
sufficiently large amplitude changes the current-voltage characteristics
(- curve) of the junction in a way similar to the effect of dc magnetic
field, well known as the flux-flow behavior. The characteristic voltage of
this low voltage branch increases with the power of microwave radiation as
with the index . Experiments
using a low-temperature laser scanning microscope unambiguously indicate the
motion of Josephson vortices driven by microwaves. Numerical simulations agree
with the experimental data and show strongly {\it irregular} vortex motion. We
explain our results by exploiting an analogy between the microwave-induced
vortex flow in long Josephson junctions and incoherent multi-photon absorption
in small Josephson junctions in the presence of large thermal fluctuations. In
the case of long Josephson junctions the spatially-temporal chaos in the vortex
motion mimics the thermal fluctuations. In accordance with this analogy, a
control of the intensity of chaos in a long junction by changing its damping
constant leads to a pronounced change in the shape of the - curve. Our
results provide a possible explanation to previously measured but not yet
understood microwave-driven properties of intrinsic Josephson junctions in
high-temperature superconductors.Comment: 8 pages, 13 figure
MIRU-VNTR genotyping of Mycobacterium tuberculosis strains using QIAxcel technology: a multicentre evaluation study
Molecular genotyping of M.tuberculosis is an important laboratory tool in the context of emerging drug resistant TB. The standard 24-loci MIRU-VNTR typing includes PCR amplification followed by the detection and sizing of PCR fragments using capillary electrophoresis on automated sequencers or using agarose gels. The QIAxcel Advanced system might offer a cost-effective medium-throughput alternative.Performance characteristics of the QIAxcel Advanced platform for the standard 24 VNTR loci panel was evaluated at two centres on a total of 140 DNA specimens using automated capillary electrophoresis as a reference method. Additionally 4 hypervariable MIRU-VNTR loci were evaluated on 53 crude DNA extracts. The sizing accuracy, interlaboratory reproducibility and overall instrument's performance were assessed during the study.An overall concordance with the reference method was high reaching 98.5% and 97.6% for diluted genomic and crude DNA extracts respectively. 91.4% of all discrepancies were observed in fragments longer than 700bp. The concordance for hypervariable loci was lower except for locus 4120 (96.2%). The interlaboratory reproducibility agreement rates were 98.9% and 91.3% for standard and hypervariable loci, respectively. Overall performance of the QIAxcel platform for M.tuberculosis genotyping using a panel of standard loci is comparable to that of established methods for PCR fragments up to 700bp. Inaccuracies in sizing of longer fragments could be resolved through using in-house size markers or introduction of offset values. To conclude, the QiaXcel system could be considered an effective alternative to existing methods in smaller reference and regional laboratories offering good performance and shorter turnaround times
Stimulated single-fiber electromyography (sSFEMG) in Lambert-Eaton syndrome
Objective: To report the clinical features and the neurophysiological approach of a patient with Lambert-Eaton myasthenic syndrome (LEMS), highlighting the diagnostic role of the stimulated single fiber electromyography (sSFEMG). Case report: A 60-year-old woman presenting with the LEMS triad (proximal and axial weakness, autonomic dysfunction and areflexia) was evaluated by neurophysiological tests (electroneuromyography, repetitive stimulation test (TSR), voluntary and stimulated SFEMG). We reported: 1) increase of compound muscle action potential (CMAP) amplitude (>60%) following brief isometric exercise compared to the rest (baseline); 2) decremental/incremental response of CMAP amplitude at low- (3 Hz) and high-frequency (30 Hz) repetitive stimulation test (RST), respectively; 3) increased neuromuscular jitter and blocking at voluntary single-fiber electromyography (vSFEMG); 4) stimulation rate-dependent reduction of the neuromuscular jitter and blocking at sSFEMG. Diagnosis was confirmed by serological demonstration of circulating voltage gated calcium channels (VGCC) antibodies. Significance: The present case highlights the role of the sSFEMG in the diagnosis of LEMS, underling the stimulation rate-dependency of both neuromuscular jitter and blocks
Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates
Robust porous silicon substrates were employed for generating interconnected
networks of superconducting ultrathin Nb nanowires. Scanning electron
microscopy analysis was performed to investigate the morphology of the samples,
which constitute of polycrystalline single wires with grain size of about 10
nm. The samples exhibit nonzero resistance over a broad temperature range below
the critical temperature, fingerprint of phase slippage processes. The
transport data are satisfactory reproduced by models describing both thermal
and quantum fluctuations of the superconducting order parameter in thin
homogeneous superconducting wires.Comment: accepted for publication on Applied Physics Letter
Anthocyanins are Key Regulators of Drought Stress Tolerance in Tobacco
Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress
Polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons in wild, farmed, and frozen marine seafood marketed in Campania, Italy.
Polychlorinated biphenyls (PCBs), organochlorine pesticides, and polycyclic aromatic hydrocarbons (PAHs) were detected in fresh-catch, farmed, and frozen marine fish marketed in Campania, Italy. Additionally, polychlorobiphenyl congeners were found: six were non-dioxin-like (NDL-PCB) (IUPAC no. 28, 52, 101, 138, 153, and 180), and one was dioxin-like (DL-PCB) (IUPAC no. 118). In all, 93% of fresh-catch, 100% of aquaculture, and 74% of the frozen specimens contained PCBs at concentrations varying from 0.12 to 35.11 ng/g, wet weight; NDL-PCBs ranged between 0.12 and 32.44 ng/g. Penta-, hexa-, and heptachlorobiphenyls were predominant. Regarding organochlorine pesticides, hexachlorobenzene was detected in 35% of fresh catch, 36% of farmed, and 46% of the frozen fish specimens, in a range between < 0.01 and 3.29 ng/g. Contents of the dichlorodiphenyltrichloroethane isomer amounted to 0.12 to 11.00 ng/g. Finally, PAHs were detected in 100% of the specimens. Benzo[a]pyrene was detected in 66% of the aquaculture, 35% of the fresh catch, and 24% of the frozen species, at concentrations varying from 0.03 to 9.18 ng/g. On the basis of annual fish consumption, an average daily intake of NDL-PCBs of 6.02 ng/kg of body weight was estimated. Calculated daily hexachlorobenzene and total dichlorodiphenyltrichloroethane intakes were, respectively, 0.11 and 0.90 ng/kg of body weight per day. The contribution of fish to the daily consumption of the noncarcinogenic PAHs can be considered low; for benzo[a]pyrene, the estimated daily intake is considerably lower than the doses considered carcinogenic for experimental animals by the European Union Scientific Committee on Food
A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress
Abiotic stresses adversely affect crop production causing yield reductions in important crops, including tomato (Solanum lycopersicum L.). Among the different abiotic stresses, drought is considered to be the most critical one, since limited water availability negatively impacts plant growth and development, especially in arid and semi-arid areas. The aim of this study was to understand how biostimulants may interact with critical physiological response mechanisms in tomato under limited water availability and to define strategies to improve tomato performances under drought stress. We investigated the physiological responses of the tomato genotype ‘E42’ grown in open fields under optimal conditions (100% irrigation) and limited water availability (50% irrigation) treated or not with a novel protein hydrolysate-based biostimulant (CycoFlow, Agriges, BN, Italy). Plants treated with the protein hydrolysate showed a better water status and pollen viability, which also resulted in higher yield under drought stress compared to untreated plants. The treatment with the biostimulant had also an effect on antioxidant contents and activity in leaves and fruits depending on the level of irrigation provided. Altogether, these results indicate that the application of protein hydrolysates on tomato improved plant performances under limited water availability and in different experimental fields
- …