3,627 research outputs found

    Metastability for reversible probabilistic cellular automata with self--interaction

    Get PDF
    The problem of metastability for a stochastic dynamics with a parallel updating rule is addressed in the Freidlin--Wentzel regime, namely, finite volume, small magnetic field, and small temperature. The model is characterized by the existence of many fixed points and cyclic pairs of the zero temperature dynamics, in which the system can be trapped in its way to the stable phase. %The characterization of the metastable behavior %of a system in the context of parallel dynamics is a very difficult task, %since all the jumps in the configuration space are allowed. Our strategy is based on recent powerful approaches, not needing a complete description of the fixed points of the dynamics, but relying on few model dependent results. We compute the exit time, in the sense of logarithmic equivalence, and characterize the critical droplet that is necessarily visited by the system during its excursion from the metastable to the stable state. We need to supply two model dependent inputs: (1) the communication energy, that is the minimal energy barrier that the system must overcome to reach the stable state starting from the metastable one; (2) a recurrence property stating that for any configuration different from the metastable state there exists a path, starting from such a configuration and reaching a lower energy state, such that its maximal energy is lower than the communication energy

    Metastability in the two-dimensional Ising model with free boundary conditions

    Full text link
    We investigate metastability in the two dimensional Ising model in a square with free boundary conditions at low temperatures. Starting with all spins down in a small positive magnetic field, we show that the exit from this metastable phase occurs via the nucleation of a critical droplet in one of the four corners of the system. We compute the lifetime of the metastable phase analytically in the limit T0T\to 0, h0h\to 0 and via Monte Carlo simulations at fixed values of TT and hh and find good agreement. This system models the effects of boundary domains in magnetic storage systems exiting from a metastable phase when a small external field is applied.Comment: 24 pages, TeX fil

    Sum of exit times in series of metastable states in probabilistic cellular automata

    Get PDF
    Reversible Probabilistic Cellular Automata are a special class of automata whose stationary behavior is described by Gibbs--like measures. For those models the dynamics can be trapped for a very long time in states which are very different from the ones typical of stationarity. This phenomenon can be recasted in the framework of metastability theory which is typical of Statistical Mechanics. In this paper we consider a model presenting two not degenerate in energy metastable states which form a series, in the sense that, when the dynamics is started at one of them, before reaching stationarity, the system must necessarily visit the second one. We discuss a rule for combining the exit times from each of the metastable states

    Renormalization Group in the uniqueness region: weak Gibbsianity and convergence

    Full text link
    We analyze the block averaging transformation applied to lattice gas models with short range interaction in the uniqueness region below the critical temperature. We prove weak Gibbsianity of the renormalized measure and convergence of the renormalized potential in a weak sense. Since we are arbitrarily close to the coexistence region we have a diverging characteristic length of the system: the correlation length or the critical length for metastability, or both. Thus, to perturbatively treat the problem we have to use a scale-adapted expansion. Moreover, such a model below the critical temperature resembles a disordered system in presence of Griffiths' singularity. Then the cluster expansion that we use must be graded with its minimal scale length diverging when the coexistence line is approached

    Monte Carlo study of the growth of striped domains

    Full text link
    We analyze the dynamical scaling behavior in a two-dimensional spin model with competing interactions after a quench to a striped phase. We measure the growth exponents studying the scaling of the interfaces and the scaling of the shrinking time of a ball of one phase plunged into the sea of another phase. Our results confirm the predictions found in previous papers. The correlation functions measured in the direction parallel and transversal to the stripes are different as suggested by the existence of different interface energies between the ground states of the model. Our simulations show anisotropic features for the correlations both in the case of single-spin-flip and spin-exchange dynamics.Comment: 15 pages, ReVTe

    Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions

    Full text link
    We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modelling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.Comment: 16 pages, 7 figure

    Relaxation Height in Energy Landscapes: an Application to Multiple Metastable States

    Get PDF
    The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We introduce the notion of relaxation height in a general energy landscape and we prove sufficient conditions which are valid even in presence of multiple metastable states. We show how these results can be used to approach the problem of multiple metastable states via the use of the modern theories of metastability. We finally apply these general results to the Blume--Capel model for a particular choice of the parameters ensuring the existence of two multiple, and not degenerate in energy, metastable states
    corecore