2 research outputs found

    Nanophotonics: Optical time reversal with graphene

    Get PDF
    Would you ever guess that a microscopic flake of graphite could reverse the diffraction of light? An experiment that demonstrates just such an effect highlights the exciting optical applications of graphene — an atomic layer of carbon with a two-dimensional honeycomb lattice

    Going beyond Axisymmetry: 2.5D Vector Electromagnetics

    Get PDF
    Linear wave propagation through inhomogeneous structures of size R≫λ (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/λ. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the discretized problem is block-diagonal. A particular scenario is the case of a cylindrically-symmetric geometry, where an appropriate basis is the set of cylindrical waves with all possible azimuthal numbers (m). Each of the excited cylindrical harmonics propagate through the structure independently of all other harmonics, and therefore the fields associated with that harmonic can be found by solving an essentially two-dimensional PDE problem in the ρ-z (half)-plane. The cylindrical waves have a prescribed dependence on the azimuthal angle variable (φ), hence the name – 2.5D electromagnetics. This novel approach is applied to the problem of cloaking and wave scattering off a spherical nanoparticle on metallic and/or dielectric substrates.COMSOL, Inc
    corecore