966 research outputs found

    Isothermal Bondi accretion in Jaffe and Hernquist galaxies with a central black hole: fully analytical solutions

    Full text link
    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and co-evolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert-Euler WW-function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, mostly important the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the above mentioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.Comment: 18 pages, 6 figures, submitted to ApJ, comments welcom

    Alignment and morphology of elliptical galaxies: the influence of the cluster tidal field

    Full text link
    We investigate two possible effects of the tidal field induced by a spherical cluster on its elliptical galaxy members: the modification of the ellipticity of a spherical galaxy and the isophotal alignment in the cluster radial direction of a misaligned prolate galaxy. Numerical N-body simulations have been performed for radial and circular galactic orbits. The properties of the stars' zero--velocity surfaces in the perturbed galaxies are explored briefly, and the adiabaticity of the galaxy to the external field is discussed. For a choice of parameters characteristic of rich clusters we find that the induced ellipticity on a spherical galaxy is below or close to the detectability level. But we find that the tidal torque can result in significant isophotal alignment of the galaxies' major axis with the cluster radial direction if the galaxy is outside the cluster core radius. The time required for the alignment is very short compared with the Hubble time. A significant increase in the ellipticity of the outer isophotes of the prolate model is also found, but with no observable isophotal twisting. Our main prediction is an alignment segregation of the elliptical galaxy population according to whether their orbits lie mostly outside or inside the cluster core radius. These results also suggest that galactic alignment in rich clusters is not incompatible with a bottom-up galaxy formation scenario.Comment: 20 pages, uuencoded compressed tarred postscrip

    Effects of tidal interactions on the gas flows of elliptical galaxies

    Get PDF
    During a Hubble time, cluster galaxies may undergo several mutual encounters close enough to gravitationally perturb their hot, X-ray emitting gas flows. We ran several 2D, time dependent hydrodynamical models to investigate the effects of such perturbations on the gas flow inside elliptical galaxies. In particular, we studied in detail the modifications occurring in the scenario proposed by D'Ercole et al. (1989), in which the galactic interstellar medium produced by the aging galactic stellar population, is heated by SNIa at a decreasing rate. We find that, although the tidal interaction in our models lasts less than 1 Gyr, its effect extends over several Gyrs. The tidally induced turbulent flows create dense filaments which cool quickly and accrete onto the galactic center, producing large spikes in the global Lx. Once this mechanism starts, it is fed by gravity and amplified by SNIa. In cooling flow models without supernovae the amplitude of the Lx fluctuations due to the tidal interaction is substantially reduced. We conclude that, if SNIa significantly contribute to the energetics of the gas flows in ellipticals, then the observed spread in the Lx-Lb diagram may be caused, at least in part, by this mechanism. On the contrary, tidal interactions cannot be responsible for the observed spread if the pure cooling flow scenario applies (abridged).Comment: 21 pages, 8 figures, to be published in ApJ (main journal

    Feedback from Central Black Holes in Elliptical Galaxies: Two-dimensional Models Compared to One-dimensional Models

    Full text link
    We extend the black hole (BH) feedback models of Ciotti, Ostriker, and Proga to two dimensions. In this paper, we focus on identifying the differences between the one-dimensional and two-dimensional hydrodynamical simulations. We examine a normal, isolated L∗L_* galaxy subject to the cooling flow instability of gas in the inner regions. Allowance is made for subsequent star formation, Type Ia and Type II supernovae, radiation pressure, and inflow to the central BH from mildly rotating galactic gas which is being replenished as a normal consequence of stellar evolution. The central BH accretes some of the infalling gas and expels a conical wind with mass, momentum, and energy flux derived from both observational and theoretical studies. The galaxy is assumed to have low specific angular momentum in analogy with the existing one-dimensional case in order to isolate the effect of dimensionality. The code then tracks the interaction of the outflowing radiation and winds with the galactic gas and their effects on regulating the accretion. After matching physical modeling to the extent possible between the one-dimensional and two-dimensional treatments, we find essentially similar results in terms of BH growth and duty cycle (fraction of the time above a given fraction of the Eddington luminosity). In the two-dimensional calculations, the cool shells forming at 0.1--1 kpc from the center are Rayleigh--Taylor unstable to fragmentation, leading to a somewhat higher accretion rate, less effective feedback, and a more irregular pattern of bursting compared to the one-dimensional case.Comment: 15 pages, 10 figures, ApJ 237:26. Updated to match published versio

    Star formation in early-type galaxies: the role of stellar winds and kinematics

    Full text link
    Early-type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae and the thermalization of stellar motions. High resolution 2D hydrodynamical simulations showed that ordered rotation in the stellar component results in the formation of a centrifugally supported cold equatorial disc. In a recent numerical investigation we found that subsequent generations of stars are formed in this cold disc; this process consumes most of the cold gas, leaving at the present epoch cold masses comparable to those observed. Most of the new stellar mass formed a few Gyrs ago, and resides in a disc.Comment: 2 pages, 1 figure, to appear in proceedings of IAU Symposium 315, "From Interstellar Clouds to Star-Forming Galaxies: Universal Processes?", P. Jablonka, F. Van der Tak & P. Andre', ed

    Evidence of widespread degradation of gene control regions in hominid genomes

    Get PDF
    Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human¿chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees
    • …
    corecore