6 research outputs found

    GIS in seismology: contributions to the evaluation of seismic hazard and risk

    Get PDF
    In this paper we highlight the capabilities and advantages of GIS, through an explicit analysis of its contribution within different studies of seismic hazard and risk assessment. These studies are related to Romania – one of Europe’s countries with the highest seismic risk, mainly due to intermediate-depth earthquakes originating in the Vrancea Zone. We provide examples of how GIS contributes and enhances the evaluation of seismic hazard, the development of vulnerability spatial datasets, multicriteria analysis, real-time estimation of seismic risk, assessment of road network failure susceptibility and implications, mapping or others. The role of free data and contribution capabilities are discussed. In recent projects such as Bigsees and Ro-Risk, GIS was one of the elements that lead to innovation, and we aim to present the experience and results. Another important aspect is referred to: the importance of GIS to a research dissemination with great impact

    Ground-motion models for Vrancea intermediate-depth earthquakes

    No full text
    A newly compiled high-quality ground-shaking dataset of 207 intermediate-depth earthquakes recorded in the Vrancea region of the south-eastern Carpathian mountains in Romania was used to develop region-specific empirical predictive equations for various intensity measures: peak ground acceleration, peak ground velocity, and 5%-damped pseudo-spectral acceleration up to 10 s. Besides common predictor variables (e.g. moment magnitude, depth, hypocentral distance, and site conditions), additional distance scaling parameters were added to describe the specific attenuation pattern observed at the stations located not only on the back and fore but also along the Carpathian arc. In this model, we introduce a proxy measure for the site as the fundamental frequency of resonance to characterize the site response at each recording seismic station beside the soil classes. To additionally reduce the site-to-site variability, a non-ergodic methodology was considered, resulting in a lower standard deviation of about 25%. Statistical evaluation of the newly proposed ground-motion models indicates robust performance compared to regional observations. The model shows significant improvements in describing the spatial variability (at different spectral ordinates), particularly for the fore-arc area of the Carpathians where a deep sedimentary basin is located. Furthermore, the model presented herein improves estimates of ground shaking at longer spectral ordinates (>1 s) in agreement with the observations. The proposed ground-motion models are valid for hypocentral distances less than 500 km, depths over 70 km and within the moment magnitude range of 4.0–7.4.ISSN:8755-2930ISSN:1944-820

    Estimating Geophysical Bedrock Depth Using Single Station Analysis and Geophysical Data in the Extra-Carpathian Area of Romania

    No full text
    Local site evaluation is an essential step in understanding the amplification of seismic motion induced by the complex geological structure and their estimation for future strong earthquakes in urban regions. One of the critical parameters on evaluating amplification effects is the depth of the geophysical bedrock, whose interface to soft sediments is responsible for the development of destructive resonance phenomena. The present study is focused on the estimation of the geophysical bedrock depth along the extra-Carpathian area of Romania (Moesian Platform and surroundings) by correlating and interpolating the results obtained from single station measurements with the available geological/geophysical data. Each site was investigated through the computation of horizontal-to-vertical (H/V) spectral ratios from three-component single station measurements of ambient vibrations. The geophysical bedrock depth was computed using a two-step inversion scheme, based on the retrieval of the Rayleigh-wave ellipticity peak at each seismic station using a regional generic velocity profile. The fundamental frequency of resonance reaches the lowest value in the deepest side (0.07 Hz) and is rising to 13 Hz in the South of the Moesian Platform, where a shallow bedrock is present. The computed bedrock depths (from 30 to ~ 3100 m) show a dipping tendency towards the Southern Carpathians and complex features such as local outcrops and lateral depth variations superpose this gradually dipping trend. In the Carpathian foreland, the bedrock is interpreted as the transition between different sediment layers of Neogene, while outside this area as the Neogene—Cretaceous transition. © 2020, Springer Nature Switzerland AG.ISSN:0033-4553ISSN:1420-9136ISSN:1557-736

    Analysis of the seismic wavefield in the Moesian Platform (Bucharest area) for hazard assessment purposes

    No full text
    During large earthquakes generated at intermediate depth in the Vrancea seismic zone, the ground motion recorded in Bucharest (Romania) is characterized by predominant long periods with strong amplification. Time–frequency analysis highlights the generation of low frequency surface waves (<1 Hz) for sufficiently strong and superficial events. This phenomenon has been explained by the influence of both source mechanism (radiation pattern, directivity effects) and mechanical properties of the local geological structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wavefield produced by earthquakes in the area of Bucharest, taking into account its location in the centre of the Moesian Platform, a large sedimentary basin (450 km long, 300 km wide and up to 20 km deep). To this aim, we identify the contribution of different seismic surface waves, such as the ones produced at the edges of this large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves), on ground motion. The data from a 35 km diameter array (URS experiment) were used. The array was installed by the National Institute for Earth Physics in cooperation with the Karlsruhe Institute for Technology and operated during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones. The earthquake wavefield recorded by the URS array was analysed using the MUSIQUE technique. This technique analyses the three-component signals of all sensors of a seismic array together. The analysis includes 19 earthquakes with epicentral distances from 100 to 1560 km and with various backazimuths with enough energy at low frequencies (0.1–1 Hz), within the resolution range of the array. For all events, the largest portion of energy is arriving from the source direction and the wavefield is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2-D or 3-D effects of the Moesian Platform. The azimuthal distribution shows that the scattering comes primarily from the southern and northern edges of the basin. The Airy phase of Love waves was clearly identified as the main contributor in the range of the fundamental frequency of resonance of the basin (0.15–0.25 Hz), with directionality along the backazimuth and its opposite direction. Moreover, two further distinct frequency bands around 0.4 and 0.7 Hz with higher amplitudes were identified. Their complex nature is a combination of the higher modes of Rayleigh waves, Airy phases of Love waves and SH waves. Love and Rayleigh wave dispersion curves were successfully retrieved by combining the information of all events and show a good match with the ones obtained using ambient vibrations. Additionally, the first higher mode of Rayleigh waves could be retrieved using data from earthquakes. Also, the prograde and retrograde Rayleigh wave ellipticity was computed.ISSN:0956-540XISSN:1365-246

    Rapid Earthquake Damage Assessment System in the Black Sea Basin: Selection/Adoption of Ground Motion Prediction Equations with Emphasis in the Cross-Border Areas

    No full text
    In the present study, an effort to propose and adopt appropriate Ground Motion Prediction Equations (GMPEs) for the Rapid Earthquake Damage Assessment System (REDAS) in the Black Sea basin is attempted. Emphasis of GMPE harmonization in the cross-border areas (CBA) is given. For this reason, two distinct sub-areas are investigated, taking into consideration their seismotectonic regime. One sub-area refers to active shallow crustal earthquakes (Greece-Turkey, CBA) and the other to intermediate-depth and shallow crustal earthquakes (Romania-Moldova, Western Black Sea CBA). Testing and ranking of pre-selected GMPEs has been performed using strong motion data of the broader CBA regions of both sub-areas. The final proposed GMPEs to feed the REDA System may assure the effective estimation of ShakeMaps and—in combination with the appropriate vulnerability curves—reliable near-real-time damage assessment in the cross-border earthquake affected areas
    corecore