93 research outputs found
Monte Carlo simulations on rare-earth Holmium ultra-thin films
Motivated by recent experimental results in ultra-thin helimagnetic Holmium
films, we have performed an extensive classical Monte Carlo simulation of films
of different thickness, assuming a Hamiltonian with six inter-layer exchange
constants. Both magnetic structure and critical properties have been analyzed.
For n>16 (n being the number of spin layers in the film) a correct bulk limit
is reached, while for lower n the film properties are clearly affected by the
strong competition among the helical pitch and the surface effects, which
involve the majority of the spin layers: In the thickness range n=9-16 three
different magnetic phases emerge, with the high-temperature, disordered,
paramagnetic phase and the low-temperature, long-range ordered one separated by
an intriguing intermediate-temperature block phase, where outer ordered layers
coexist with some inner, disordered ones. The phase transition of these inner
layers displays the signatures of a Kosterlitz-Thouless one. Finally, for n<~7
the film collapse once and for all to a quasi-collinear order. A comparison of
our Monte Carlo simulation outcomes with available experimental data is also
proposed, and further experimental investigations are suggested.Comment: 29 pages, 14 figure
Ebola virus VP35 blocks stress granule assembly
Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly
Frequency-dependent reduction of cybersickness in virtual reality by transcranial oscillatory stimulation of the vestibular cortex
Virtual reality (VR) applications are pervasive of everyday life, as in working, medical, and entertainment scenarios. There is yet no solution to cybersickness (CS), a disabling vestibular syndrome with nausea, dizziness, and general discomfort that most of VR users undergo, which results from an integration mismatch among visual, proprioceptive, and vestibular information. In a double-blind, controlled trial, we propose an innovative treatment for CS, consisting of online oscillatory imperceptible neuromodulation with transcranial alternating current stimulation (tACS) at 10 Hz, biophysically modelled to reach the vestibular cortex bilaterally. tACS significantly reduced CS nausea in 37 healthy subjects during a VR rollercoaster experience. The effect was frequency-dependent and placebo-insensitive. Subjective benefits were paralleled by galvanic skin response modulation in 25 subjects, addressing neurovegetative activity. Besides confirming the role of transcranially delivered oscillations in physiologically tuning the vestibular system function (and dysfunction), results open a new way to facilitate the use of VR in different scenarios and possibly to help treating also other vestibular dysfunctions
Frequency-dependent tuning of the human vestibular "sixth sense" by transcranial oscillatory currents
Objective: The vestibular cortex is a multisensory associative region that, in neuroimaging investigations, is activated by slow-frequency (1-2 Hz) galvanic stimulation of peripheral receptors. We aimed to directly activate the vestibular cortex with biophysically modeled transcranial oscillatory current stimulation (tACS) in the same frequency range. Methods: Thirty healthy subjects and one rare patient with chronic bilateral vestibular deafferentation underwent, in a randomized, double-blind, controlled trial, to tACS at slow (1 or 2 Hz) or higher (10 Hz) frequency and sham stimulations, over the Parieto-Insular Vestibular Cortex (PIVC), while standing on a stabilometric platform. Subjective symptoms of motion sickness were scored by Simulator Sickness Questionnaire and subjects' postural sways were monitored on the platform. Results: tACS at 1 and 2 Hz induced symptoms of motion sickness, oscillopsia and postural instability, that were supported by posturographic sway recordings. Both 10 Hz-tACS and sham stimulation on the vestibular cortex did not affect vestibular function. As these effects persisted in a rare patient with bilateral peripheral vestibular areflexia documented by the absence of the Vestibular-Ocular Reflex, the possibility of a current spread toward peripheral afferents is unlikely. Conversely, the 10 Hz-tACS significantly reduced his chronic vestibular symptoms in this patient. Conclusions: Weak electrical oscillations in a frequency range corresponding to the physiological cortical activity of the vestibular system may generate motion sickness and postural sways, both in healthy subjects and in the case of bilateral vestibular deafferentation. Significance: This should be taken into account as a new side effect of tACS in future studies addressing cognitive functions. Higher frequencies of stimulation applied to the vestibular cortex may represent a new interventional option to reduce motion sickness in different scenarios
The liquefaction features in the area of the May-June 2012 Emilia seismic sequence: An investigation approach coupling Electric Resistivity Tomography (ERT) with coring
In order to geometrically characterize the liquefaction features observed in the epicentral sector of the 2012 Emilia seismic sequence and to evaluate the potential for recording palaeoseismic features of the area, we performed two electric resistivity tomographic sections and 4 shallow corings, coupled with 14C datings and archaeological age estimates in selected sites. Preliminary results show that there is a good agreement between ERT sections and core-logs; moreover a major role in determining the scalar relationships of the liquefaction features is played by the local geomorphological and topographic setting. The high sedimentation rates obtained through core datings (4 – 20 mm/yr) suggest that the described methodological approach can cover time windows of only a few centuries, thus hardly encompassing, in this tectonic setting, a significant period for paleoseismological purposes.Published206-2092T. Deformazione crostale attivaN/A or not JC
Alzheimer's disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss
Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F
Fishers’ Perception on the Interaction between Dolphins and Fishing Activities in Italian and Croatian Waters
Interactions between fishing and dolphins can be detrimental, since on one hand dolphins can be lethally entangled by nets and trawls, and on the other dolphins can predate fish caught by nets. For dolphins, this interaction can be dangerous as they can be wounded or accidentally killed; for fishers, the predation of their catch results in economic losses due to reduced quantity and/or quality of catches and damage to fishing gear. During July and November 2020, we surveyed the “dolphin–fisheries conflict” through compiling 209 fisher interviews from nine locations in Italy and Croatia. Fishers mentioned the common bottlenose dolphin (Tursiops truncatus) as the species primarily interacting with fishing, with the major issue being catch damage by predation. The interaction probability varied among gears and seasons, with some fishing activities (e.g., passive nets) more affected than others (e.g., bottom trawls), especially in terms of economic loss (1000–10,000 €/year on average). More than 70% of the fishers claimed that dolphin populations have increased over the last 10 years, in different degrees and based on different areas. Dolphin bycatch rates are generally low; however, 34.6% of respondents reported having captured at least one dolphin during their career. The fishers’ attitude towards acoustic deterrents (“pingers”) as a mitigation measure revealed that few of them were aware of these devices or were using them
Novel potent liposome agonists of triggering receptor expressed on myeloid cells 2 phenocopy antibody treatment in cells
The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists
Differential expression of type I interferon and inflammatory genes in SARS-CoV-2-infected patients treated with monoclonal antibodies
Introduction: Considering the reported efficacy of monoclonal antibodies (mAbs) directed against the Spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in reducing disease severity, the aim of this study was to investigate the innate immune response before and after mAbs treatment in 72 vaccinated and 31 unvaccinated SARS-CoV-2 patients.
Methods: The mRNA levels of IFN-I, IFN-related genes and cytokines were evaluated using RT/real-time quantitative PCR.
Results: Vaccinated patients showed increased rate of negative SARS-CoV-2 PCR tests on nasopharyngeal swab compared with unvaccinated ones after mAbs treatment (p = .002). Unvaccinated patients had lower IFN-α/ω and higher IFN-related genes (IFNAR1, IFNAR2, IRF9, ISG15, ISG56 and IFI27) and cytokines (IL-6, IL-10 and TGF-β) mRNA levels compared to vaccinated individuals before mAbs (p < .05 for all genes). Increased IFN-α/ω, IFNAR1, IFNAR2 and IRF9 levels were observed in unvaccinated patients after mAbs treatment, while the mRNA expression ISGs and IL-10 were reduced in all patients.
Conclusion: These data suggest that anti-S vaccinated patients have increased levels of innate immune genes compared to unvaccinated ones. Also, gene expression changes in IFN genes after mAbs administration are different according to the vaccination status of patients
- …