26 research outputs found
Diagnosis and clinical management of neurological disorders caused by cytomegalovirus in AIDS patients
Cytomegalovirus (CMV) infections are common and severe complications of HIV infection. The virus involves the nervous system, causing encephalitis, polyradiculomyelitis and peripheral neuropathies, Due to their limited sensitivity, traditional virological approaches, such as virus isolation or antigen detection in the CSF are useful only in limited instances, e.g. CMV polyradiculopathy. The aetiological diagnosis of these disorders relies on the analysis of cerebrospinal fluid by PCR and quantitative PCR may be important to establish the extent of CNS lesions and to monitor the efficacy of antiviral treatments, CMV is susceptible to various antivirals, including ganciclovir, foscarnet and cidofovir. CMV infections of the nervous system, in particular encephalitis, however, show only a poor response to standard treatments, Drug combination treatments i.e. ganciclovir plus foscarnet, are currently under evaluation in clinical trials
Aluminosilicate haloes preserve complex life approximately 800 million years ago
Mudstone-hosted microfossils are a major component of the Proterozoic fossil record, particularly dominating the record of early eukaryotic life. Early organisms possessed no biomineralized parts to resist decay and controls on their fossilization in mudstones are poorly understood. Consequently, the Proterozoic fossil record is compromised—we do not know whether changing temporal/spatial patterns of microfossil occurrences reflect evolution or the distribution of favourable fossilization conditions. We investigated fossilization within the approximately 1000 Ma Lakhanda Group (Russia) and the approximately 800 Ma Svanbergfjellet and Wynniatt formations (Svalbard and Arctic Canada). Vertical sections of microfossils and surrounding matrices were extracted from thin sections by focused ion beam milling. Elemental mapping and synchrotron-based infrared microspectroscopy revealed that microfossils are surrounded by haloes rich in aluminium, probably hosted in kaolinite. Kaolinite has been implicated in Cambrian Burgess Shale-type (BST) fossilization and is known to slow the growth of degraders. The Neoproterozoic mudstone microfossil record may be biased to tropical settings conducive to kaolinite formation. These deposits lack metazoan fossils even though they share fossilization conditions with younger BST deposits that are capable of preserving non-mineralizing metazoans. Thus metazoans, at least those typically preserved in BST deposits, were probably absent from sedimentary environments before approximately 800 Ma
Protein changes in CSF of HIV-infected patients: evidence for loss of neuroprotection
To begin to unravel the complexity of HIV-associated changes in the brain, broader, multifaceted analyses of cerebrospinal fluid (CSF) are needed that examine a wide range of proteins reflecting different functions. CSF from HIV-infected patients with a range of cognitive deficits was compared to CSF from uninfected, cognitively normal patients to begin to identify protein changes associated with HIV infection and neurological disease progression. Uninfected patients showed relatively consistent patterns of protein expression. Highly expressed proteins in CSF included monocyte chemotactic protein-1, tissue inhibitors of metalloproteases, granulocyte colony-stimulating factor, adiponectin, soluble tumor necrosis factor receptor-1, urokinase-type plasminogen activator receptor, and insulin-like growth factor binding protein-2. Inflammatory and anti-inflammatory cytokines were expressed at low levels. HIV-infected patients showed increases in inflammatory proteins (interferon-gamma, tumor necrosis factor-alpha), anti-inflammatory proteins (IL-13), and chemokines but these correlated poorly with neurological status. The strongest correlation with increasing severity of neurological disease was a decline in growth factors, particularly, brain-derived neurotrophic factor and NT-3. These studies illustrate that HIV infection is associated with parallel changes in both inflammatory and neuroprotective proteins in the CSF. The inverse relationship between growth factors and neurological disease severity suggests that a loss of growth factor neuroprotection may contribute to the development of neural damage and may provide useful markers of disease progression