10 research outputs found

    Anti-DFS70 antibodies detected by specific methods in patients with thrombosis or recurrent pregnancy loss: no evidence of an association

    Get PDF
    A dense fine speckled pattern (DFS) caused by antibodies to the DFS70 kDa nuclear protein is a relatively common finding while testing for anti-nuclear antibodies (ANA) by indirect immunofluorescence (IIF) on HEp-2 cells. However, despite many efforts and numerous studies, the clinical significance of anti-DFS70 antibodies is still unknown as they can be found in patients with various disorders and even in healthy subjects. In this study we aimed at verifying whether these antibodies are associated with thrombotic events or with unexplained recurrent pregnancy loss (RPL). We studied 443 patients with venous or arterial thrombosis or RPL and 244 controls by IIF on HEp-2 cells and by a DFS70-specific chemiluminescent immunoassay (CIA). The DFS pattern was observed in IIF in 31/443 (7.0%) patients and in 6/244 (2.5%) controls (p\u2009=\u20090.01) while anti-DFS70 specific antibodies were detected by CIA in 11 (2.5%) patients and in one (0.4%) control (p\u2009=\u20090.06). Positive samples, either by IIF or by CIA, were then assayed by a second DFS70-specific line-immunoassay (LIA) method: 83.3% of the CIA positive samples were confirmed DFS70 positive versus only 29.7% of the IIF positive samples. These findings show that IIF overestimates anti-DFS70 antibody frequency and that results obtained by specific CIA and LIA assays do not indicate that venous or arterial thrombosis or RPL are linked to a higher prevalence of anti-DFS70 antibodies

    Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films

    No full text
    Large-scale integration of MoS2in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2films onto SiO2/Si substrates with a tunable thickness and cm2-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2layers is dictated by the deposition temperature and thickness. In particular, the MoS2structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing

    N2FXm, a method for joint nuclear and cytoplasmic volume measurements, unravels the osmo-mechanical regulation of nuclear volume in mammalian cells

    No full text
    Abstract In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle

    SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance

    Get PDF
    International audienceSelenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations

    Positive tissue transglutaminase antibodies with negative endomysial antibodies: Unresolved issues in diagnosing celiac disease

    No full text
    Background: The serological screening for celiac disease (CD) is currently based on the detection of anti-transglutaminase (tTG) IgA antibodies, subsequently confirmed by positive endomysial antibodies (EMA). When an anti-tTG IgA positive/EMA IgA negative result occurs, it can be due either to the lower sensitivity of the EMA test or to the lower specificity of the anti-tTG test. This study aimed at verifying how variation in analytical specificity among different anti-tTG methods could account for this discrepancy. Methods: A total of 130 consecutive anti-tTG IgA positive/EMA negative samples were collected from the local screening routine and tested using five anti-tTG IgA commercial assays: two chemiluminescence methods, one fluoroimmunoenzymatic method, one immunoenzymatic method and one multiplex flow immunoassay method. Results: Twenty three/130 (17.7%) patients were diagnosed with CD. In the other 107 cases a diagnosis of CD was not confirmed. The overall agreement among the five anti-tTG methods ranged from 28.5% to 77.7%. CD condition was more likely linked to the positivity of more than one anti-tTG IgA assay (monopositive = 2.5%, positive with ≥ three methods = 29.5%; p = 0.0004), but it was not related to anti-tTG IgA antibody levels (either positive or borderline; p = 0.5). Conclusions: Patients with positive anti-tTG/negative EMA have a low probability of being affected by CD. Given the high variability among methods to measure anti-tTG IgA antibodies, anti-tTG-positive/EMA-negative result must be considered with extreme caution. It is advisable that the laboratory report comments on any discordant results, suggesting to consider the data in the proper clinical context and to refer the patient to a CD reference center for prolonged follow up. © 2020 Elsevier B.V
    corecore