1,568 research outputs found
Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach
We propose a computationally simple model of Auger and APECS line shapes from
open-band solids. Part of the intensity comes from the decay of unscreened
core-holes and is obtained by the two-body Green's function ,
as in the case of filled bands. The rest of the intensity arises from screened
core-holes and is derived using a variational description of the relaxed ground
state; this involves the two-holes-one-electron propagator , which
also contains one-hole contributions. For many transition metals, the two-hole
Green's function can be well described by the Ladder
Approximation, but the three-body Green's function poses serious further
problems. To calculate , treating electrons and holes on equal
footing, we propose a practical approach to sum the series to all orders. We
achieve that by formally rewriting the problem in terms of a fictitious
three-body interaction. Our method grants non-negative densities of states,
explains the apparent negative-U behavior of the spectra of early transition
metals and interpolates well between weak and strong coupling, as we
demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text
with epsfig.sty and float.sty, submitted to Phys. Rev.
Electronic screening and correlated superconductivity in carbon nanotubes
A theoretical analysis of the superconductivity observed recently in Carbon
nanotubes is proposed. We argue that ultra-small (diameter )
single wall carbon nanotubes (with transition temperature )
and entirely end-bonded multi-walled ones () can superconduct
by an electronic mechanism, basically the same in both cases. By a Luttinger
liquid -like approach, one finds enhanced superconducting correlations due to
the strong screening of the long-range part of the Coulomb repulsion. Based on
this finding, we perform a detailed analysis on the resulting
Hubbard-like model, and calculate transition temperatures of the same order
of magnitude as the measured ones.Comment: 6 pages, 1 figure, PACS: 71.10.Pm,74.50.+r,71.20.Tx, to appear in
Phys. Rev.
Pairing in Cu-O Models: Clues of Joint Electron-Phonon and Electron-Electron Interactions
We discuss a many-electron Hamiltonian with Hubbard-like repulsive
interaction and linear coupling to the phonon branches, having the Cu-O plane
of the superconducting cuprates as a paradigm. A canonical transformation
extracts an effective two-body problem from the many-body theory. As a
prototype system we study the \cu cluster, which yields electronic pairing in
the Hubbard model; moreover, a standard treatment of the Jahn-Teller effect
predicts distortions that destroy electronic pairing. Remarkably, calculations
that keep all the electronic spectrum into account show that vibrations are
likely to be synergic with electronic pairing, if the coupling to
half-breathing modes predominates, as experiments suggest.Comment: 4 pages, 3 figures, accepted by Phys. Rev.
W=0 Pairing in Carbon Nanotubes away from Half Filling
We use the Hubbard Hamiltonian on the honeycomb lattice to represent the
valence bands of carbon single-wall nanotubes. A detailed symmetry
analysis shows that the model allows W=0 pairs which we define as two-body
singlet eigenstates of with vanishing on-site repulsion. By means of a
non-perturbative canonical transformation we calculate the effective
interaction between the electrons of a W=0 pair added to the interacting ground
state. We show that the dressed W=0 pair is a bound state for resonable
parameter values away from half filling. Exact diagonalization results for the
(1,1) nanotube confirm the expectations. For nanotubes of length ,
the binding energy of the pair depends strongly on the filling and decreases
towards a small but nonzero value as . We observe the existence
of an optimal doping when the number of electrons per C atom is in the range
1.21.3, and the binding energy is of the order of 0.1 1 meV.Comment: 16 pages, 6 figure
W=0 pairing in Hubbard and related models of low-dimensional superconductors
Lattice Hamiltonians with on-site interaction have W=0 solutions, that
is, many-body {\em singlet} eigenstates without double occupation. In
particular, W=0 pairs give a clue to understand the pairing force in repulsive
Hubbard models. These eigenstates are found in systems with high enough
symmetry, like the square, hexagonal or triangular lattices. By a general
theorem, we propose a systematic way to construct all the W=0 pairs of a given
Hamiltonian. We also introduce a canonical transformation to calculate the
effective interaction between the particles of such pairs. In geometries
appropriate for the CuO planes of cuprate superconductors, armchair
Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound
state in a physically relevant range of parameters. We also show that W=0 pairs
quantize the magnetic flux like superconducting pairs do. The pairing mechanism
breaks down in the presence of strong distortions. The W=0 pairs are also the
building blocks for the antiferromagnetic ground state of the half-filled
Hubbard model at weak coupling. Our analytical results for the
Hubbard square lattice, compared to available numerical data, demonstrate that
the method, besides providing intuitive grasp on pairing, also has quantitative
predictive power. We also consider including phonon effects in this scenario.
Preliminary calculations with small clusters indicate that vector phonons
hinder pairing while half-breathing modes are synergic with the W=0 pairing
mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed
Matte
Antiferromagnetism in the Exact Ground State of the Half Filled Hubbard Model on the Complete-Bipartite Graph
As a prototype model of antiferromagnetism, we propose a repulsive Hubbard
Hamiltonian defined on a graph \L={\cal A}\cup{\cal B} with and bonds connecting any element of with all the
elements of . Since all the hopping matrix elements associated with
each bond are equal, the model is invariant under an arbitrary permutation of
the -sites and/or of the -sites. This is the Hubbard model
defined on the so called -complete-bipartite graph,
() being the number of elements in (). In this
paper we analytically find the {\it exact} ground state for at
half filling for any ; the repulsion has a maximum at a critical
-dependent value of the on-site Hubbard . The wave function and the
energy of the unique, singlet ground state assume a particularly elegant form
for N \ra \inf. We also calculate the spin-spin correlation function and show
that the ground state exhibits an antiferromagnetic order for any non-zero
even in the thermodynamic limit. We are aware of no previous explicit analytic
example of an antiferromagnetic ground state in a Hubbard-like model of
itinerant electrons. The kinetic term induces non-trivial correlations among
the particles and an antiparallel spin configuration in the two sublattices
comes to be energetically favoured at zero Temperature. On the other hand, if
the thermodynamic limit is taken and then zero Temperature is approached, a
paramagnetic behavior results. The thermodynamic limit does not commute with
the zero-Temperature limit, and this fact can be made explicit by the analytic
solutions.Comment: 19 pages, 5 figures .ep
Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions
We investigate the transport properties of a one-dimensional
superconductor-normal metal-superconductor (S-N-S) system described within the
tight-binding approximation. We compute the equilibrium dc Josephson current
and the time-dependent oscillating current generated after the switch-on of a
constant bias. In the first case an exact embedding procedure to calculate the
Nambu-Gorkov Keldysh Green's function is employed and used to derive the
continuum and bound states contributions to the dc current. A general formalism
to obtain the Andreev bound states (ABS) of a normal chain connected to
superconducting leads is also presented. We identify a regime in which all
Josephson current is carried by the ABS and obtain an analytic formula for the
current-phase relation in the limit of long chains. In the latter case the
condition for perfect Andreev reflections is expressed in terms of the
microscopic parameters of the model, showing a limitation of the so called
wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S
junction we compute the exact time-evolution of the system by solving
numerically the time-dependent Bogoliubov-deGennes equations. We provide a
microscopic description of the electron dynamics not only inside the normal
region but also in the superconductors, thus gaining more information with
respect to WBL-based approaches. Our scheme allows us to study the ac regime as
well as the transient dynamics whose characteristic time-scale is dictated by
the velocity of multiple Andreev reflections
Correlated Nanoscopic Josephson Junctions
We discuss correlated lattice models with a time-dependent potential across a
barrier and show how to implement a Josephson-junction-like behavior. The
pairing occurs by a correlation effect enhanced by the symmetry of the system.
In order to produce the effect we need a mild distortion which causes avoided
crossings in the many-body spectrum. The Josephson-like response involves a
quasi-adiabatic evolution in the time-dependent field. Besides, we observe an
inverse-Josephson (Shapiro) current by applying an AC bias; a supercurrent in
the absence of electromotive force can also be excited. The qualitative
arguments are supported by explicit exact solutions in prototype 5-atom
clusters with on-site repulsion. These basic units are then combined in
ring-shaped systems, where one of the units sits at a higher potential and
works as a barrier. In this case the solution is found by mapping the
low-energy Hamiltonian into an effective anisotropic Heisenberg chain. Once
again, we present evidence for a superconducting flux quantization, i.e. a
Josephson-junction-like behavior suggesting the build-up of an effective order
parameter already in few-electron systems. Some general implications for the
quantum theory of transport are also briefly discussed, stressing the
nontrivial occurrence of asymptotic current oscillations for long times in the
presence of bound states.Comment: 12 pages, 2 figures, to appear in J. Phys. - Cond. Ma
Are violations to temporal Bell inequalities there when somebody looks?
The possibility of observing violations of temporal Bell inequalities,
originally proposed by Leggett as a mean of testing the quantum mechanical
delocalization of suitably chosen macroscopic bodies, is discussed by taking
into account the effect of the measurement process. A general criterion
quantifying this possibility is defined and shown not to be fulfilled by the
various experimental configurations proposed so far to test inequalities of
different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed
in the .tar.gz file; accepted for publication in Europhysics Letter
- …
