35 research outputs found

    Adult Subependymal Neural Precursors, but Not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields

    Get PDF
    BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma

    Cyclosporin A-Mediated Activation of Endogenous Neural Precursor Cells Promotes Cognitive Recovery in a Mouse Model of Stroke

    No full text
    Cognitive dysfunction following stroke significantly impacts quality of life and functional independance; yet, despite the prevalence and negative impact of cognitive deficits, post-stroke interventions almost exclusively target motor impairments. As a result, current treatment options are limited in their ability to promote post-stroke cognitive recovery. Cyclosporin A (CsA) has been previously shown to improve post-stroke functional recovery of sensorimotor deficits. Interestingly, CsA is a commonly used immunosuppressant and also acts directly on endogenous neural precursor cells (NPCs) in the neurogenic regions of the brain (the periventricular region and the dentate gyrus). The immunosuppressive and NPC activation effects are mediated by calcineurin-dependent and calcineurin-independent pathways, respectively. To develop a cognitive stroke model, focal bilateral lesions were induced in the medial prefrontal cortex (mPFC) of adult mice using endothelin-1. First, we characterized this stroke model in the acute and chronic phase, using problem-solving and memory-based cognitive tests. mPFC stroke resulted in early and persistent deficits in short-term memory, problem-solving and behavioral flexibility, without affecting anxiety. Second, we investigated the effects of acute and chronic CsA treatment on NPC activation, neuroprotection, and tissue damage. Acute CsA administration post-stroke increased the size of the NPC pool. There was no effect on neurodegeneration or lesion volume. Lastly, we looked at the effects of chronic CsA treatment on cognitive recovery. Long-term CsA administration promoted NPC migration toward the lesion site and rescued cognitive deficits to control levels. This study demonstrates that CsA treatment activates the NPC population, promotes migration of NPCs to the site of injury, and leads to improved cognitive recovery following long-term treatment

    Skin-derived precursor cells undergo substrate-dependent galvanotaxis that can be modified by neighbouring cells

    No full text
    Many cell types respond to electric fields (EFs) through cell migration, a process termed galvanotaxis. The galvanotactic response is critical for development and wound healing. Here we investigate whether skin-derived precursor cells (SKPs), which have the potential to differentiate into mesodermal and peripheral neural cell types, undergo directed migration in the presence of an EF. We found that EF application promotes SKP migration towards the anode. The migratory response is substrate-dependent as SKPs undergo directed migration on laminin and Matrigel, but not collagen. The majority of SKPs express the undifferentiated cell markers nestin, fibronectin and Sox2, after both EF application and in sister cultures with no EF application, suggesting that EFs do not promote cell differentiation. Co-cultures of SKPs and brain-derived neural precursor cells (NPCs), a population of cells that undergo rapid, cathode-directed migration, reveal that in the presence of NPCs an increased percentage of SKPs undergo galvanotaxis, providing evidence that cells can provide cues to modify the galvanotactic response. We propose that a better understanding of SKP migration in the presence of EFs may provide insight into improved strategies for wound repair. Keywords: Skin-derived precursors, Electric field, Cell migration, Galvanotaxis, Substrates, Co-culture

    Environmental Factors That Influence Stem Cell Migration: An “Electric Field”

    No full text
    Environmental Stimulus of Electric Fields on Stem Cell Migration. The movement of cells in response to electric potential gradients is called galvanotaxis. In vivo galvanotaxis, powered by endogenous electric fields (EFs), plays a critical role during development and wound healing. This review aims to provide a perspective on how stem cells transduce EFs into directed migration and an understanding of the current literature relating to the mechanisms by which cells sense and transduce EFs. We will comment on potential EF-based regenerative medicine therapeutics.Peer Reviewe

    Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells

    Get PDF
    Embryonic cortical neural stem cells apparently have a transient existence, as they do not persist in the adult cortex. We sought to determine the fate of embryonic cortical stem cells by following Emx1(IREScre); LacZ/EGFP double-transgenic murine cells from midgestation into adulthood. Lineage tracing in combination with direct cell labeling and time-lapse video microscopy demonstrated that Emx1-lineage embryonic cortical stem cells migrate ventrally into the striatal germinal zone (GZ) perinatally and intermingle with striatal stem cells. Upon integration into the striatal GZ, cortical stem cells down-regulate Emx1 and up-regulate Dlx2, which is a homeobox gene characteristic of the developing striatum and striatal neural stem cells. This demonstrates the existence of a novel dorsal-to-ventral migration of neural stem cells in the perinatal forebrain

    Subacute metformin treatment reduces inflammation and improves functional outcome following neonatal hypoxia ischemia

    No full text
    Hypoxia-ischemia (HI) injury is a leading cause of neonatal death and long-term disability, and existing treatment options for HI offer only modest benefit. Early intervention with the drug metformin has been shown to promote functional improvement in numerous rodent models of injury and has pleiotropic cellular effects in the brain. We have previously shown that 1 week of metformin treatment initiated 24 ​h after HI in neonatal mice resulted in improved motor and cognitive performance, activation of endogenous neural precursor cells (NPCs), and increased oligodendrogenesis. While promising, a limitation to this work is that immediate pharmacological intervention is not always possible in the clinic. Herein, we investigated whether delaying metformin treatment to begin in the subacute phase post-HI would still effectively promote recovery. Male and female C57/BL6 mice received HI injury postnatally, and metformin treatment began 7 days post-HI for up to 4 weeks. Motor and cognitive performance was assessed across time using behavioural tests (cylinder, foot fault, puzzle box). We found that metformin improved motor and cognitive behaviour, decreased inflammation, and increased oligodendrocytes in the motor cortex. Our present findings demonstrate that a clinically relevant subacute metformin treatment paradigm affords the potential to treat neonatal HI, and that improved outcomes occur through modulation of the inflammatory response and oligodendrogenesis

    Biphasic monopolar electrical stimulation induces rapid and directed galvanotaxis in adult subependymal neural precursors

    No full text
    Abstract Introduction Following injury such as stroke, adult mammalian subependymal neural precursor cells (NPCs) are induced to proliferate and migrate toward the lesion site where they differentiate into neural cells, albeit with limited efficacy. We are interested in enhancing this migratory ability of NPCs with the long-term goal of promoting neural repair. Herein we build on our previous studies demonstrating that direct current electric fields (DCEFs) promote rapid and cathode-directed migration of undifferentiated adult NPCs (but not differentiated phenotypes) - a phenomenon known as galvanotaxis. While galvanotaxis represents a promising strategy to promote NPC recruitment to lesion sites, stimulation of neural tissue with DCEFs is not a clinically-viable strategy due to the associated accumulation of charge and toxic byproducts. Balanced biphasic waveforms prevent the accumulation of charge and thus are outside of the limitations of DCEFs. In this study, we investigated the effects of balanced biphasic electrical stimulation on the migratory behaviour of undifferentiated subependymal NPCs and their differentiated progeny. Methods NPCs were isolated from the subependymal zone of adult mouse brains and cultured in a NPC colony-forming assay to form neurospheres. Neurospheres were plated onto galvanotaxis chambers in conditions that either promoted maintenance in an undifferentiated state or promoted differentiation into mature phenotypes. Chambers containing cells were then time-lapse imaged in the presence of either biphasic monopolar, or biphasic bipolar electrical stimulation, or in the complete absence of electrical stimulation. Single cell migration was subsequently tracked and the cells’ magnitude of velocity, directedness and tortuosity were quantified. Results We demonstrate, for the first time, the use of balanced biphasic electric fields to induce galvanotaxis of NPCs. Undifferentiated adult mouse subependymal NPCs exposed to biphasic monopolar stimulation undergo rapid and directed migration toward the cathode. In contrast, both biphasic bipolar stimulation and the lack of electrical stimulation produced non-directed migration of NPCs. Notably, NPCs induced to differentiate into mature phenotypes prior to exposure to electrical stimulation do not migrate in the presence or absence of biphasic stimulation. Conclusion We purport that balanced biphasic stimulation represents a clinically-viable technique for mobilizing NPCs that may be integrated into strategies for promoting endogenous neurorepair

    Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair

    No full text
    Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation
    corecore