56 research outputs found
Quasi-static and low-velocity impact behavior of intraply hybrid flax/basalt composites
In an attempt to increase the low-velocity impact response of natural fiber composites, a new hybrid intraply woven fabric based on flax and basalt fibers has been used to manufacture laminates with both thermoplastic and thermoset matrices. The matrix type (epoxy or polypropylene (PP) with or without a maleated coupling agent) significantly affected the absorbed energy and the damage mechanisms. The absorbed energy at perforation for PP-based composites was 90% and 50% higher than that of epoxy and compatibilized PP composites, respectively. The hybrid fiber architecture counteracted the influence of low transverse strength of flax fibers on impact response, irrespective of the matrix type. In thermoplastic laminates, the matrix plasticization delayed the onset of major damage during impact and allowed a better balance of quasi-static properties, energy absorption, peak force, and perforation energy compared to epoxy-based composites
Genetic algorithm for space debris and space objects attitude motion reconstruction through optical measurements
Space debris has recently become a major problem in the planning and execution of space missions. Due to the recent widespread placement of satellite mega- constellations in Low Earth Orbits (LEO), where most of the catalogued debris is located, the need to monitor such uncontrolled objects and maintain an up-to-date catalogue has increased. Moreover, estimating the attitude motion of a space object is fundamental to improving methods for orbit determination and supporting eventual Active Debris Removal (ADR) missions. The Sapienza Space System and Space Surveillance Laboratory (S5Lab), whose researchers have years of experience in space debris detection, operates an extensive observation network that can exploit different observation strategies. This paper illustrates the reconstruction of an object’s attitude motion from its light curve, which can be extracted using scientific Complementary Metal-Oxide Semiconductor (sCMOS) sensors installed on high-slew rate telescopes. The method is based on a comparison between the object's actual light curve and a synthetic curve created by changing the initial conditions for the attitude motion, considering the observer's motion, the Sun’s position, the object’s position and its 3D model. A genetic algorithm is used to create multiple synthetic light curves by varying the initial conditions for the attitude motion until one of them matches the observed one. In addition to extracting the light curves and reconstructing the attitude, observational strategies for acquiring light curves are discussed. Finally, the results of the investigation of potentially hazardous debris are presented
A dual perspective on geostationary satellite monitoring using DSLR RGB and sCMOS sloan filters
This paper outlines a multi-system approach for ground-based optical observations and the characterization of satellites in geostationary orbit. This multi-system approach is based on an in-depth analysis of the key factors to consider for light curve analysis of Earth’s orbiting satellites. Light curves have been observed in different spectral bands using two different systems. The first system is specialized for astronomical observations and consists of a telescope equipped with an sCMOS camera and Sloan photometric filters. In contrast, the second system is a more cost-effective solution designed for professional non-astronomical applications, incorporating DSLR cameras equipped with RGB channels associated with a Bayer mask and photographic lenses. This comparative analysis aims to highlight the differences and advantages provided by each system, stressing their respective performance characteristics. The observed light curves will be presented as a function of the phase angle, which depends on the relative positions of the observer, the object, and the Sun. This angle plays an important role in optimizing the visibility of Earth’s orbiting satellites. Finally, multiband observations of different satellites will be compared to seek an associated spectral signature, which may allow the identification of structurally similar objects through optical observations
Changes in renal function after nephroureterectomy for upper urinary tract carcinoma: analysis of a large multicenter cohort (Radical Nephroureterectomy Outcomes (RaNeO) Research Consortium)
Purpose To investigate prevalence and predictors of renal function variation in a multicenter cohort treated with radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC). Methods Patients from 17 tertiary centers were included. Renal function variation was evaluated at postoperative day (POD)-1, 6 and 12 months. Timepoints differences were Delta 1 = POD-1 eGFR - baseline eGFR; Delta 2 = 6 months eGFR - POD-1 eGFR; Delta 3 = 12 months eGFR - 6 months eGFR. We defined POD-1 acute kidney injury (AKI) as an increase in serum creatinine by >= 0.3 mg/dl or a 1.5 1.9-fold from baseline. Additionally, a cutoff of 60 ml/min in eGFR was considered to define renal function decline at 6 and 12 months. Logistic regression (LR) and linear mixed (LM) models were used to evaluate the association between clinical factors and eGFR decline and their interaction with follow-up. Results A total of 576 were included, of these 409(71.0%) and 403(70.0%) had an eGFR < 60 ml/min at 6 and 12 months, respectively, and 239(41.5%) developed POD-1 AKI. In multivariable LR analysis, age (Odds Ratio, OR 1.05, p < 0.001), male gender (OR 0.44, p = 0.003), POD-1 AKI (OR 2.88, p < 0.001) and preoperative eGFR < 60 ml/min (OR 7.58, p < 0.001) were predictors of renal function decline at 6 months. Age (OR 1.06, p < 0.001), coronary artery disease (OR 2.68, p = 0.007), POD-1 AKI (OR 1.83, p = 0.02), and preoperative eGFR < 60 ml/min (OR 7.80, p < 0.001) were predictors of renal function decline at 12 months. In LM models, age (p = 0.019), hydronephrosis (p < 0.001), POD-1 AKI (p < 0.001) and pT-stage (p = 0.001) influenced renal function variation (ss 9.2 +/- 0.7, p < 0.001) during follow-up. Conclusion Age, preoperative eGFR and POD-1 AKI are independent predictors of 6 and 12 months renal function decline after RNU for UTUC
Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study
Background:
The outcomes of liver surgery worldwide remain unknown. The true population-based outcomes are likely different to those vastly reported that reflect the activity of highly specialized academic centers. The aim of this study was to measure the true worldwide practice of liver surgery and associated outcomes by recruiting from centers across the globe. The geographic distribution of liver surgery activity and complexity was also evaluated to further understand variations in outcomes.
Methods:
LiverGroup.org was an international, prospective, multicenter, cross-sectional study following the Global Surgery Collaborative Snapshot Research approach with a 3-month prospective, consecutive patient enrollment within January–December 2019. Each patient was followed up for 90 days postoperatively. All patients undergoing liver surgery at their respective centers were eligible for study inclusion. Basic demographics, patient and operation characteristics were collected. Morbidity was recorded according to the Clavien–Dindo Classification of Surgical Complications. Country-based and hospital-based data were collected, including the Human Development Index (HDI). (NCT03768141).
Results:
A total of 2159 patients were included from six continents. Surgery was performed for cancer in 1785 (83%) patients. Of all patients, 912 (42%) experienced a postoperative complication of any severity, while the major complication rate was 16% (341/2159). The overall 90-day mortality rate after liver surgery was 3.8% (82/2,159). The overall failure to rescue rate was 11% (82/ 722) ranging from 5 to 35% among the higher and lower HDI groups, respectively.
Conclusions:
This is the first to our knowledge global surgery study specifically designed and conducted for specialized liver surgery. The authors identified failure to rescue as a significant potentially modifiable factor for mortality after liver surgery, mostly related to lower Human Development Index countries. Members of the LiverGroup.org network could now work together to develop quality improvement collaboratives
- …