72 research outputs found

    Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid

    Get PDF
    We investigate the propagation and scattering of polaritons in a planar GaAs microcavity in the linear regime under resonant excitation. The propagation of the coherent polariton wave across an extended defect creates phase and intensity patterns with identical qualitative features previously attributed to dark and half-dark solitons of polaritons. We demonstrate that these features are observed for negligible nonlinearity (i.e., polariton-polariton interaction) and are, therefore, not sufficient to identify dark and half-dark solitons. A linear model based on the Maxwell equations is shown to reproduce the experimental observations.Comment: Article + Supplementary Information (tot. 18 pages

    PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes

    Get PDF
    Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents

    Evaluating thermogravimetric analysis for the measurement of drug loading in mesoporous silica nanoparticles (MSNs)

    Get PDF
    In this study, a thermogravimetric analysis (TGA) method for measuring the drug loading in mesoporous silica nanoparticles (MSNs) has been developed and evaluated in comparison with the drug loading quantification by high-performance liquid chromatography (HPLC). Indapamide was loaded into two different types of MSNs, namely Mobile Crystalline Material (MCM-41, pore size = 1.2 nm) and Santa Barbara Amorphous (SBA-15, pore size = 4.1 nm). Physical mixtures of the drug and silica gave a linear correlation between the observed and expected drug content for both TGA and HPLC, which were used for calibration purposes. The limit of detection (LOD) for the TGA method obtained from the physical mixture calibration curve was 0.77 % (w/w) and the r² value was 0.9936, whereas the HPLC had a LOD of 0.06 % (w/w) and an r² value of 0.9933. The sensitivity of the TGA method was well established using the drug loading studies, as it can detect the low loading of MCM-41 at 2.2 ± 0.21 % (w/w), compared to 5.1 ± 0.12 % (w/w) with the SBA-15. In all samples applied, the multiple comparison analysis showed an insignificant difference between the two methods (p > 0.05). The TGA data presented good evidence for using this technique as a sensitive, cost-effective, and low-variable quantitative analysis in the drug loading determination of the MSNs. TGA is not a selective method of quantification, but optimising the method using the pure and blank samples of MSNs and drug can significantly improve the sensitivity. This work provides a unique approach to apply TGA as a selective and more favourable method to characterise MSNs to do early formulation developments

    Solid-Phase Synthesis and In-Silico Analysis of Iron-Binding Catecholato Chelators

    Get PDF
    Siderophores are iron-complexing compounds synthesized by bacteria and fungi. They are low molecular weight compounds (500-1500 Daltons) possessing high affinity for iron(III). Since 1970 a large number of siderophores have been characterized, the majority using hydroxamate or catecholate as functional groups. The biosynthesis of siderophores is typically regulated by the iron levels of the environment where the organism is located. Because of their exclusive affinity and specificity for iron(III), natural siderophores and their synthetic derivatives have been exploited in the treatment of human iron-overload diseases, as both diagnostic and therapeutic agents. Here, solid-phase approach for the preparation of hexadentate, peptide-based tricatecholato containing peptides is described. The versatility of the synthetic method allows for the design of a common scaffolding structure whereby diverse ligands can be conjugated. With so many possibilities, a computational approach has been developed which will facilitate the identification of those peptides which are capable of providing a high affinity iron(III) binding site. This study reports an integrated computational/synthetic approach towards a rational development of peptide-based siderophores
    corecore