2 research outputs found

    Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging

    Get PDF
    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging

    Surface-based correlates of cognition along the Alzheimer's continuum in a memory clinic population

    Get PDF
    Composite cognitive measures in large-scale studies with biomarker data for amyloid and tau have been widely used to characterize Alzheimer's disease (AD). However, little is known about how the findings from these studies translate to memory clinic populations without biomarker data, using single measures of cognition. Additionally, most studies have utilized voxel-based morphometry or limited surface-based morphometry such as cortical thickness, to measure the neurodegeneration associated with cognitive deficits. In this study, we aimed to replicate and extend the biomarker, composite study relationships using expanded surface-based morphometry and single measures of cognition in a memory clinic population. We examined 271 clinically diagnosed symptomatic individuals with mild cognitive impairment (N = 93) and Alzheimer's disease dementia (N = 178), as well as healthy controls (N = 29). Surface-based morphometry measures included cortical thickness, sulcal depth, and gyrification index within the “signature areas” of Alzheimer's disease. The cognitive variables pertained to hallmark features of Alzheimer's disease including verbal learning, verbal memory retention, and language, as well as executive function. The results demonstrated that verbal learning, language, and executive function correlated with the cortical thickness of the temporal, frontal, and parietal areas. Verbal memory retention was correlated to the thickness of temporal regions and gyrification of the inferior temporal gyrus. Language was related to the temporal regions and the supramarginal gyrus' sulcal depth and gyrification index. Executive function was correlated with the medial temporal gyrus and supramarginal gyrus sulcal depth, and the gyrification index of temporal regions and supramarginal gyrus, but not with the frontal areas. Predictions of each of these cognitive measures were dependent on a combination of structures and each of the morphometry measurements, and often included medial temporal gyrus thickness and sulcal depth. Overall, the results demonstrated that the relationships between cortical thinning and cognition are widespread and can be observed using single measures of cognition in a clinically diagnosed AD population. The utility of sulcal depth and gyrification index measures may be more focal to certain brain areas and cognitive measures. The relative importance of temporal, frontal, and parietal regions in verbal learning, language, and executive function, but not verbal memory retention, was replicated in this clinic cohort
    corecore