21 research outputs found

    Modelling of a real CO2 booster installation and evaluation of control strategies for heat recovery applications in supermarkets

    Full text link
    [EN] This paper compares and quantifies the energy, environmental and economic benefits of various control strategies recovering heat from a CO2 booster system in a supermarket for space heating with the purpose of understanding its potential for displacing natural gas fuelled boilers. A theoretical steady-state model that simulates the behaviour of the CO2 system is developed and validated against field measurements obtained from an existing refrigeration system in a food-retail building located in the United Kingdom. Five heat recovery strategies are analysed by modifying the mass flow and pressure level in the condenser. The model shows that a reduction of 48% in natural-gas consumption is feasible by the installation of a de-superheater and without applying any advanced operating strategy. However, the CO2 system can fully supply the entire space-heating requirements by adopting alternative control strategies, albeit by penalising the coefficient of performance (COP) of the compressor. Results show that the best energy strategy can reduce total consumption by 32%, while the best economic strategy can reduce costs by 6%. Findings from this work suggest that heat recovery systems can bring substantial benefits to improve the overall efficiency of energy-intensive buildings; nevertheless trade-offs need to be carefully considered and analysed on a site by site basis before embarking on such initiatives.This research was supported by funds provided via the Imperial-Sainsbury's Supermarkets Ltd. partnership. This work also was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/P004709/1]. Emilio J. Sarabia gratefully acknowledges financial support from Universitat Politecnica de Valencia Fellowship. Data supporting this publication can be obtained on request from [email protected] Escrivà, EJ.; Acha, S.; Le Brun, N.; Soto Francés, VM.; Pinazo Ojer, JM.; Markides, C.; Shah, N. (2019). Modelling of a real CO2 booster installation and evaluation of control strategies for heat recovery applications in supermarkets. International Journal of Refrigeration. 107:288-300. https://doi.org/10.1016/j.ijrefrig.2019.08.005S28830010

    Commercial refrigeration - An overview of current status

    Full text link
    [EN] Commercial Refrigeration comprises food freezing and conservation in retail stores and supermarkets, so, it is one of the most relevant energy consumption sectors, and its relevance is increasing. This paper reviews the most recent developments in commercial refrigeration available in literature and presents a good amount of results provided these systems, covering some advantages and disadvantages in systems and working fluids. Latest researches are focused on energy savings to reduce CO2 indirect emissions due to the burning of fossil fuels. They are focused on system modifications (as dedicated subcooling or the implementation of ejectors), trigeneration technologies (electrical, heating and cooling demand) and better evaporation conditions control. Motivated by latest GWP regulations that are intended to reduce high GWP HFC emissions; R404A and R507 are going to phase out. Besides hydrocarbons and HFO, CO2 appears as one of the most promising HFC replacements because its low contribution to global warming and high efficiencies when used in transcritical and low-stage of cascade systems.The authors thankfully acknowledge "Ministerio de Educacion, Cultura y Deporte" for supporting this work through "Becas y Contratos de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion del ejercicio 2012".Mota Babiloni, A.; Navarro Esbri, J.; Barragán Cervera, Á.; Moles, F.; Peris, B.; Verdú Martín, GJ. (2015). Commercial refrigeration - An overview of current status. International Journal of Refrigeration. 57:186-196. doi:10.1016/j.ijrefrig.2015.04.013S1861965
    corecore