4 research outputs found
The Uneven Influence of Climate Trends and Agricultural Policies on Maize Production in the Yucatan Peninsula, Mexico
Maize is an important staple crop in Mexico, and the recent intensification of climate variability, in combination with non-climatic forces, has hindered increases in production, especially for smallholder farmers. This article demonstrates the influence of these drivers on maize production trends in the three states of the Yucatan Peninsula using a mixed methods approach of climatic analysis and semi-structured interviews. Climate trend analysis and generalized additive models (GAMs) demonstrate relationships between production and climatic variability, using 1980–2010 precipitation and temperature data. Data from forty interviews with government officials and representatives of farmers\u27 associations (gathered in 2015 and 2016) highlight the influence of agricultural policy on maize production in the region. The climate trend analysis yielded mixed results, with a statistically significant negative rainfall trend for Quintana Roo and variability in maximum temperature changes across the region, with an increase in Yucatan State and Quintana Roo and a decrease in Campeche. Climate and production GAMs indicate a strong significant relationship between production and climate fluctuations for Campeche (79%) and Quintana Roo (72%) and a weaker significant relationship for the Yucatan State (31%). Informants identified precipitation variability and ineffective public policies for smallholder agricultural development as primary obstacles for maize production, including inadequate design of agricultural programs, inconsistent agricultural support, and ineffective farmers\u27 organizations. Quantifying the influence of climate change on maize production, and the amplifying influence of national and regional agricultural policy for smallholder farmers, will inform more appropriate policy design and implementation
Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda
peer reviewedSince 2016, the fall armyworm (FAW) Spodoptera frugiperda has spread over extensive areas of the tropics and subtropics, imperiling food security, economic progress and the livelihoods of millions of cereal farmers. Although FAW has received long-standing scientific attention in its home range in the Americas, chemical inputs feature prominently in its mitigation and biological control uptake is globally lagging. Here, building upon a quantitative review of the global literature, we methodically dissect FAW biological control science. Of the known entomopathogens (46), parasitoids (304) and predators (215) of FAW, approx. 40% have been subject to laboratory- or field-level scrutiny. Laboratory-level performance has partially been assessed for 14–18% of the above invertebrate taxa. Yet, organismal, geographic, methodological and thematic biases hamper efforts to relate in-field biodiversity to actual ecosystem service delivery. Often, single-guild ‘snapshot’ surveys are preferred over comprehensive bio-inventories or population dynamics appraisals, trophic interactions are wrongly inferred from co-occurrence, standard pest infestation metrics are lacking and natural enemy censuses are performed arbitrarily. Diurnal biota receive inordinate attention, while egg and pupal predation - the main biotic sources of mortality - are routinely overlooked. Multiple microbial and invertebrate biota are investigated with a view towards mass-rearing and augmentative release, but the basis for agent selection is often unclear. Lastly, conservation biological control receives marginal attention and cross-disciplinary engagement with the agroecology domain is lagging. We lay out several steps, including standardized methodologies, smart use of biodemographic toolkits, networked field trials and a fortification of its ecological underpinnings, to sharpen the science of (FAW) biological control and urge further momentum in its global implementation
The Uneven Influence of Climate Trends and Agricultural Policies on Maize Production in the Yucatan Peninsula, Mexico
Maize is an important staple crop in Mexico, and the recent intensification of climate variability, in combination with non-climatic forces, has hindered increases in production, especially for smallholder farmers. This article demonstrates the influence of these drivers on maize production trends in the three states of the Yucatan Peninsula using a mixed methods approach of climatic analysis and semi-structured interviews. Climate trend analysis and generalized additive models (GAMs) demonstrate relationships between production and climatic variability, using 1980–2010 precipitation and temperature data. Data from forty interviews with government officials and representatives of farmers\u27 associations (gathered in 2015 and 2016) highlight the influence of agricultural policy on maize production in the region. The climate trend analysis yielded mixed results, with a statistically significant negative rainfall trend for Quintana Roo and variability in maximum temperature changes across the region, with an increase in Yucatan State and Quintana Roo and a decrease in Campeche. Climate and production GAMs indicate a strong significant relationship between production and climate fluctuations for Campeche (79%) and Quintana Roo (72%) and a weaker significant relationship for the Yucatan State (31%). Informants identified precipitation variability and ineffective public policies for smallholder agricultural development as primary obstacles for maize production, including inadequate design of agricultural programs, inconsistent agricultural support, and ineffective farmers\u27 organizations. Quantifying the influence of climate change on maize production, and the amplifying influence of national and regional agricultural policy for smallholder farmers, will inform more appropriate policy design and implementation
Catalogue of behaviors of <i>Eretmocerus eremicus</i> analyzed in this study.
<p>Catalogue of behaviors of <i>Eretmocerus eremicus</i> analyzed in this study.</p