19 research outputs found

    Recent advances in understanding and managing diverticulitis.

    Get PDF
    In the past few decades, the increasing socioeconomic burden of acute diverticulitis (AD) has become evident, and with the growth of the population age, this significant economic impact will likely continue to rise. Furthermore, recent evidence showed an increased rate of hospital admissions especially evident among women and younger individuals. The natural history and pathophysiology of this clinical condition is still to be fully defined, and efforts continue to be made in the identification of risk factors and the establishment of relative preventive strategies. The actual therapeutic strategies aimed to modulate gut microbiota, such as rifaximin or probiotics, or to reduce mucosal inflammation, such as mesalazine, present a relatively poor efficacy for both the prevention of the first AD episode (primary prevention) and its recurrence (secondary prevention). In the last few years, the main goal achieved has been in the management of AD in that uncomplicated AD can, to a larger extent, be managed in an outpatient setting with no or little supportive therapy, a strategy that will certainly impact on the health costs of this disease. The problem of AD recurrence remains a topic of debate. The aim of this review is to present updated evidence on AD epidemiology and relative open clinical questions and to analyze in detail predisposing and protective factors with an attempt to integrate their possible modes of action into the several pathogenic mechanisms that have been suggested to contribute to this multifactorial disease. A unifying hypothesis dealing with the colonic luminal and extra-luminal microenvironments separately is provided. Finally, evidence-based changes in therapeutic management will be summarized. Because of an ascertained multifactorial pathogenesis of uncomplicated and complicated AD, it is probable that a single ‘causa prima’ will not be identifiable, and a better stratification of patients could allow one to pursue tailored therapeutic algorithm strategies

    Microbiota, Innate Immune System, and Gastrointestinal Muscle Ongoing Studies

    No full text
    Aim: To test the activities of culture-extracted or commercially available toll-like receptors (TLRs) ligands to establish their direct impact on target gastrointestinal motor cells. Methods: Short-term and long-term effects of Shigella flexneri M90T and Escherichia coil K-2 strains-extracted lipopolysaccharides (LPS), commercially highly purified LPS (E. coli 0111:B4 and EH100), and Pam2CSK4 and Pam3CSK4, which bind TLR2/6 and TLR1/2 heterodimers, respectively, have been assessed on pure primary cultures of colonic human smooth muscle cells (HSMC). Results: Pathogenic Shigella-LPS and nonpathogenic E. coli K-2-LPS induced a time-dependent decrease of resting cell length and acetylcholine-induced contraction, with both alterations occurring rapidly and being more pronounced in response to the former. However, their effects differed, prolonging HSMC exposure with Shigella-LPS effects maintained throughout the 4 hours of observation compared with E. coli K-2-LPS, which disappeared after 60 minutes of incubation. Similar differences in magnitude and time dependency of myogenic effects were observed between pure TLR4 and TLR2/1 or TLR2/6 ligands. The specific activation of TLR4 with LPS from pathogen or nonpathogen E. coli, 0111:B4 and EH100, respectively, induced smooth muscle alterations that progressively increased, prolonging incubation, whereas TLR2 ligands induced short-term alterations, of a lesser magnitude, which decreased over time. The real-time polymerase chain reaction analysis showed that HSMC express mRNA for TLR1, 2, 4, and 6, substantiating a direct effect of TLR ligands on human colonic smooth muscle. Conclusions: This study highlights that bacterial products can directly affect gastrointestinal motility and that TLRs subtypes may differ in their cellular activity

    Myogenic regional responsiveness to cholinergic and vipergic stimulation in human colon

    No full text
    Background Differences in the actions of enteric neurotransmitters on colonic circular and longitudinal muscle layers have not been clearly determined, nor the possible existence of intrinsic myogenic phenotypes that might contribute to regional differences in human colon motor activity. The aim of this study was to analyze the direct pharmaco-mechanical coupling of carbachol (CCh) and vasoactive intestinal polypeptide (VIP) on human colonic smooth muscle strips and cells. Methods Circular and longitudinal muscle strips and cells were obtained from 15 human specimens of ascending and sigmoid colon. Both isometric tension on muscle strips and contraction and relaxation on cells were measured in response to increasing CCh and VIP concentrations. Key Results Circular muscle strips of ascending colon were more sensitive to the effect of CCh than that of sigmoid colon, EC50 values being, respectively, 4.15 mu mol L-1 and 8.47 mu mol L-1 (P < 0.05), although there were no differences in maximal responses. No regional differences were observed in longitudinal muscle strips or in smooth muscle cells. Maximal responses to CCh were higher on circular than longitudinal muscle strips and cells throughout the colon. A greater sensitivity to VIP was observed in ascending colon compared with sigmoid colon, both in circular (EC50: 0.041 and 0.15 mu mol L-1, respectively, P < 0.01) and longitudinal (EC50: 0.043 and 0.09 mu mol L-1, respectively, P < 0.05) strips, and similar differences were observed in longitudinal smooth muscle cells (EC50: 44.85 and 75.24 nmol L-1, respectively, P < 0.05). Conclusions & Inferences Regional myogenic differences in pharmaco-mechanical coupling between the enteric neurotransmitters and smooth muscle contribute to the complex regional motor patterns of human colon

    Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus Lipopolysaccharide-induced damage in human colonic smooth muscle cells

    No full text
    Abstract BACKGROUND: Some beneficial effects of probiotics may be due to secreted probiotic-derived factors, identified as "postbiotic" mediators. The aim of this study was to evaluate whether supernatants harvested from Lactobacillus rhamnosus GG (LGG) cultures (ATCC53103 strain) protect colonic human smooth muscle cells (HSMCs) from lipopolysaccharide (LPS)-induced myogenic damage. MATERIALS AND METHODS: LGG was grown in de Man, Rogosa, Share medium at 37°C and samples were collected in middle and late exponential, stationary, and overnight phases. Supernatants were recovered by centrifugation, filtered, and stored at -20°C. The primary HSMCs culture was exposed for 24 hours to purified LPS of a pathogen strain of Escherichia coli (O111:B4) (1 μg/mL) with and without supernatants. Postbiotic effects were evaluated on the basis of HSMCs morphofunctional alterations and interleukin-6 (IL-6) production. Data are expressed as mean±SE (P&lt;0.05 significant). RESULTS: LPS induced persistent, significant, 20.5%±0.7% cell shortening and 34.5%±2.2% decrease in acetylcholine-induced contraction of human HSMCs. These morphofunctional alterations were paralleled to a 365.65%±203.13% increase in IL-6 production. All these effects were dose-dependently reduced by LGG supernatants. Supernatants of the middle exponential phase already partially restored LPS-induced cell shortening by 57.34%±12.7% and IL-6 increase by 145.8%±4.3% but had no effect on LPS-induced inhibition of contraction. Maximal protective effects were obtained with supernatants of the late stationary phase with LPS-induced cell shortening restored by 84.1%±4.7%, inhibition of contraction by 85.5%±6.4%, and IL-6 basal production by 92.7%±1.2%. CONCLUSIONS: LGG-derived products are able to protect human SMCs from LPS-induced myogenic damage. Novel insights have been provided for the possibility that LGG-derived products could reduce the risk of progression to postinfective motor disorders

    OP-3 The protective role of Lactobacillus Rhamnosus GG-derived factors against LPS-induced damage of human colonic smooth muscle cells

    No full text
    Impaired gut barrier function has been reported in some functional gastrointestinal (GI) disorders.Evidences suggest that gut microbiota affects GI motility in particular Lactobacillus species elicits anti-inflammatory activity and exerts protective effects on damage induced by pathogen Gram negative-derived lipopolysaccharide(LPS).LPS produced an oxidative imbalance in human colonic smooth muscle cells (SMC) that persists after LPS-washout and contributes to SMC morphofunctional alterations
    corecore