323 research outputs found

    Analysis of the electrical and thermal behaviour of Li-ion batteries using 0D and 3D-CFD approaches with validation on experimental data

    Get PDF
    Due to their characteristics, lithium-ion cells are the reference in the construction of a battery pack for electric vehicles (EVs). Despite this, their use is strongly affected by the operating temperature because the materials they are made of are thermally stable only in a relatively limited range around ambient temperature. Cell modelling and simulation become therefore essential in the design of the cell, of the battery pack and of its auxiliary systems to optimize performance while maintaining sufficient safety margins. In the present study, two zero-dimensional equivalent circuit models of a commercial Li-ion cell are developed and tuned in order to predict the electrical and thermal behaviour of the cell. The models are validated and compared with experimental data found in the scientific literature referring to both dynamic and static tests. This comparison shows the importance of tuning the model parameters, which are decisive for the accuracy of the simulation. Using a commercial tool dedicated to battery modelling, a three-dimensional model is then developed to investigate the electrical and thermal behaviour of the cell from a spatial point of view. The results obtained are aligned with those found in the scientific literature. With the present work, it has been possible to simulate and analyse the global behaviour of the cell (0D model) as well as its detailed behaviour (3D model) using relatively modest computational resources, thus constituting a solid base for more complex modelling such as that of a battery pack and its cooling system

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum SVS\subseteq V such that every vertex vv in VSV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Ground states of a two phase model with cross and self attractive interactions

    Get PDF
    We consider a variational model for two interacting species (or phases), subject to cross and self attractive forces. We show existence and several qualitative properties of minimizers. Depending on the strengths of the forces, different behaviors are possible: phase mixing or phase separation with nested or disjoint phases. In the case of Coulomb interaction forces, we characterize the ground state configurations

    A linear algorithm for string reconstruction in the reverse complement equivalence model

    Get PDF
    In the reverse complement equivalence model, it is not possible to distinguish a string from its reverse complement. We show that one can still reconstruct a string of length n, up to reverse complement, using a linear number of subsequence queries of bounded length. We first give the proof for strings over a binary alphabet, and then extend it to arbitrary finite alphabets. A simple information theoretic lower bound proves the number of queries to be asymptotically tight. Furthermore, our result is optimal w.r.t. the bound on the query length given in Erdos et al. (2006) [6]

    Normal, Abby Normal, Prefix Normal

    Full text link
    A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number pnw(n)pnw(n) of prefix normal words of length nn, showing that pnw(n)=Ω(2ncnlnn)pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right) for some cc and pnw(n)=O(2n(lnn)2n)pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right). We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants to drive her "abnormal" -- we discuss which parameter settings allow Alice to succeed.Comment: Accepted at FUN '1

    Parameterized Inapproximability of Target Set Selection and Generalizations

    Full text link
    In this paper, we consider the Target Set Selection problem: given a graph and a threshold value thr(v)thr(v) for any vertex vv of the graph, find a minimum size vertex-subset to "activate" s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex vv is activated during the propagation process if at least thr(v)thr(v) of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions ff and ρ\rho this problem cannot be approximated within a factor of ρ(k)\rho(k) in f(k)nO(1)f(k) \cdot n^{O(1)} time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results
    corecore